\qquad

Titration

Titration is a process that uses a neutralization reaction to determine the concentration of an acid or a base. Concentration, remember, is the mass of the solute per unit volume of solution. Chemists measure concentration in moles per liter or molarity (M).For acids and bases that produce the same number of hydrogen and hydroxide ions per mole $\left[\mathrm{HCl}\right.$ and $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{Ca}(\mathrm{OH})_{2}$, or $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\left.\mathrm{Al}(\mathrm{OH})_{3}\right]$, the molarity of the acid used in a neutralization times its volume is equal to the molarity of the base used in the neutralization times its volume.

$$
M_{a} \times V_{a}=M_{b} \times V_{b}
$$

For acids and bases that do not produce hydrogen ions and hydroxide ions in a 1 to 1 ratio, it is necessary to calculate the effective concentration before applying the formula. See below:

Effective Concentration

Sample Problems

Sample Problem 1

What is the concentration of a $30 . \mathrm{mL}$ sample of HCl if it can be neutralized by 50 . mL of 1.2 M NaOH ?

Step 1: Note the ratio of H^{+}to OH^{-}is 1 to 1

Step 2: Substitute values into the equation

$$
\begin{aligned}
& \mathbf{M}_{\mathbf{A}} \times \mathbf{V}_{\mathbf{A}}=\mathbf{M}_{\mathbf{B}} \times \mathbf{V}_{\mathbf{B}} \\
& \mathbf{M}_{\mathrm{A}}(30 . \mathrm{mL})=(1.2 \mathrm{M})(50 . \mathrm{mL})
\end{aligned}
$$

Step 3: Solve for the unknown

$$
M_{A}=\frac{(1.2 \mathrm{M})(50 . \mathrm{mL})}{(30 . \mathrm{mL})}=\mathbf{2 . 0 M}
$$

Sample Problem 3

How much 3.0 $\mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is needed to neutralize 50. mL of $1.2 \mathrm{M} \mathrm{Al}(\mathrm{OH})_{3}$?

Step 1: Determine the effective concentrations of the substances

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{A}}=3.0 \mathrm{M} \times 2=6.0 \mathrm{M} \\
& \mathrm{M}_{\mathrm{B}}=1.2 \mathrm{M} \times 3=3.6 \mathrm{M}
\end{aligned}
$$

Step 2: Substitute values into the equation and solve for the unknown

$$
\begin{aligned}
& \mathbf{M}_{\mathrm{A}} \times \mathbf{V}_{\mathrm{A}}=\mathbf{M}_{\mathbf{B}} \times \mathbf{V}_{\mathbf{B}} \\
& (6.0 \mathrm{M}) \mathrm{V}_{\mathrm{A}}=(3.6 \mathrm{M})(50 . \mathrm{mL}) \\
& \mathrm{V}_{\mathrm{A}}=30 . \mathrm{mL}
\end{aligned}
$$

Sample Problem 2

Determine the concentration of $\mathrm{H}_{3} \mathrm{PO}_{4}$ if a $90 . \mathrm{mL}$ sample is neutralized by $30 . \mathrm{mL}$ of $0.9 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$.

Step 1: Determine the effective concentration of the known substance

$$
0.9 \mathrm{M} \times 2=1.8 \mathrm{M}
$$

Step 2: Substitute values into the equation and solve for the unknown

$$
\begin{aligned}
& \mathbf{M}_{\mathbf{A}} \times \mathbf{V}_{\mathbf{A}}=\mathbf{M}_{\mathbf{B}} \times \mathbf{V}_{\mathbf{B}} \\
& \mathbf{M}_{\mathrm{A}}(90 . \mathrm{mL})=(1.8 \mathrm{M})(30 . \mathrm{mL}) \\
& \mathbf{M}_{\mathrm{A}}=0.6 \mathrm{M}
\end{aligned}
$$

Step 3: Determine the actual concentration of the unknown from the effective concentration

$$
\mathbf{M}_{\mathbf{A}}=\frac{\mathbf{M}_{\mathbf{A E}}}{n_{\mathbf{H}}}=\frac{0.6 M}{3}=0.2 \mathrm{M}
$$

Continue f 殀

Answer the questions below by referring to the examples on the previous page. Write the answer in the answer space to the left of the question.
\qquad 1. How much $6.0 \mathrm{M} \mathrm{HNO}_{3}$ is needed to neutralize 39 mL of 2.0 M KOH ?
\qquad 2. How much 3.0 M NaOH is needed to neutralize 30 . mL of $0.75 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?
\qquad 3. What is the concentration of 20 mL of LiOH if it is neutralized by 60 mL of 4 M HCl ?
\qquad 4. What is the concentration of $60 \mathrm{~mL}^{\text {4 }} \mathrm{H}_{3} \mathrm{PO}_{4}$ if it is neutralized by 225 mL of $2 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$?
5. How much 2 M HBr is needed to neutralize 380 mL of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$?

The answers to the questions above are all integers. Each answer stands for a letter of the alphabet. Write the correct letters in the spaces below to find the solution to the riddle.

