SUPA DOOPA Bonding Packet

Chemistry:	Form WS4.1.1A	Name	
BONDING		Date	Period

How Bonds Form

The electrons of one atom are attracted to the protons of another. When atoms combine, there is a tug of war over the valence electrons. The combining atoms either lose, gain, or share electrons in such a way that they complete their outer shells. Whether atoms gain, lose, or share electrons depends how tightly they hold onto their own electrons and how strongly they pull on the electrons of another atom.

Answer the questions below based on the information above and on your knowledge of chemistry.

1.	What is the charge on a proton?
2.	What is the charge on an electron?
3.	Why do an atom's electrons revolve around its protons instead of drifting away?
4.	Why are the electrons of one atom attracted to the protons of another?
5.	What happens when two atoms get near each other that causes them to bond?
6.	How are the elements sodium and chlorine classified?
7.	What would happen during a tug of war between sodium and chlorine over each others outer electrons? Why?
8.	How do sodium and chlorine combine?

Chemistry:	Form WS4.1.2A	Name	
BONDING		Date	Period

Ĭoric Bords

Ionic bonds are caused by the attraction between oppositely charged ions. Ions form as follows: The electrons of one atom are attracted to the protons of another. Metals hold onto electrons loosely while nonmetals hold onto electrons tightly. As a result, metals lose electrons and nonmetals gain electrons in such a way that they complete their outer shells. Atoms that gain or lose electrons become electrically charged. Metals become positively charged ions by losing electrons. Nonmetals become negatively charged ions by gaining electrons. Metal cations and nonmetal anions become ionically bonded because they are oppositely charged.

ION TALK

An	swer the questions below based on your understanding of ionic bonds.
1.	Draw Bohr-Rutherford diagrams of sodium and chlorine atoms showing the number of protons and neutrons, and the arrangement of electrons.
2.	What will happen to sodium and chlorine when they combine (HINT: Remember how metals and nonmetals
	combine.)
3.	Draw Bohr-Rutherford diagrams of sodium and chlorine atoms showing the changes in the arrangement of electrons after they combine.
4.	What are the charges on the sodium ion and the chloride ion after they combine? (HINT: Count the number of
	protons and electrons of each.)
5.	What are the oxidation states of sodium and chlorine?
6.	Why do sodium and chlorine become bonded?
7.	What is the total charge on a compound of sodium and chlorine?

Chemistry: Form WS4.1.4A

BONDING

Date Period

Covalerit Borids

Covalent bonds are bonds formed by sharing electrons. The electrons of one atom are attracted [My electron!] to the protons of another, but neither atom pulls strongly enough to remove an electron from the other. Covalent bonds form when the electronegativity difference between the elements is less than 1.7 (see the Electronegativity table on the back of the Periodic Table) or when hydrogen behaves like a metal. When a covalent bond forms, no valence electrons are transferred, rather, they are shared. If the electronegativity difference is zero, the electrons are shared equally and the bond is nonpolar. If the electronegativity difference is greater than 0.4 but less than 1.7, the electrons are displaced towards the more electronegative element (nonmetal) and the bond is polar. In a covalent bond, unpaired valence electrons pair up in such a way that the atoms complete their outer shells.

Electron Dot Diagrams Showing Unpaired Valence Electrons (NOTE: When bonding occurs, molecular orbitals form. As a result, the two electrons that are normally paired in the lowest energy orbital move into separate orbitals)

$$\text{Li} \cdot \overset{\cdot}{\text{Be}} \cdot \overset{\cdot}{\cdot} \overset{\cdot}{\text{B}} \cdot \overset{\cdot}{\cdot} \overset{\cdot}{\text{C}} \cdot$$

$$\cdot \dot{N}: \cdot \ddot{O}: : \ddot{F}: : \ddot{N}e:$$

Pairing Electrons:

Nonpolar Covalent Bond: $Cl^0 + Cl^0 \rightarrow Cl_2$: $\dot{Cl} \cdot \dot{Cl} : \rightarrow$: $\dot{Cl} : \dot{Cl} :$

Polar Covalent Bond: $H^+ + Cl^- \rightarrow HCl$ $H \cdot + \cdot Cl$: \longrightarrow H : Cl:

Based on your understanding of covalent bonds, answer the questions below.

- Draw electron dot diagrams for hydrogen and oxygen. 1.
- Draw electron dot diagrams showing the pairing of electrons to form water from hydrogen and oxygen. All outer 2. shells should be complete.
- Are the bonds in water polar or nonpolar. How do you know? 3.

Chemistry:	Form WS4.1.5A	Name	
PERIODIC	TABLE AND BONDING	Date	Period

Bord Tyre

When atoms combine, there is a tug of war over their valence electrons. The type of bond that forms depends on the outcome of the tug of war. The outcome of the tug of war is determined by the relative strengths of the forces exerted by the atoms. The electronegativity provides a measure of those forces. When the electronegativity difference is greater than or equal to 1.7, the atom with the greater electronegativity gains the electron, and an ionic bond is formed. Electronegativity differences below 1.7 result in covalent bonds or sharing. If the electronegativity difference is close to zero (<0.4), the atoms share equally and a nonpolar bond forms. Higher electronegativity differences (still below 1.7) result in unequal sharing or polar bonds.

Fill in the table below by looking up the electronegativities of the elements in each compound. Determine the electronegativity difference and the bond type.

_	Electro	negativity	Electronegativity	Bond Type Ionic, Polar covalent, Nonpolar covalent	
Compound	Metal (low)	Nonmetal (high)	Difference		
Example: NaBr	0.9	3.0	2.1	ionic	
HCI					
H₂Te					
KI					
SO ₂					
H₂O					
CS ₂					
N₂O₅					
MgO					

Chemistry:	Form	WS4	. 1	6 A
	TOTIL	******		

BONDING

Name	 	 		
Date		Period	3	

Recognizing Polar Molecules

To determine if a compound is polar, you must consider the electronegativity difference within each bond and the three dimensional shape of the compound. If the electronegativity difference is greater than 1.7 or close to zero, the compound is not polar. Electronegativity differences above 1.7 are found in ionic compounds. Electronegativity differences around zero are found in molecules with nonpolar bonds. Electronegativity differences between 0.4 and 1.7 are found in molecules with polar bonds. These molecules can be polar or nonpolar depending on their shapes. Molecules with polar bonds distributed symmetrically are nonpolar. Asymmetrical molecules with polar bonds are polar. Water is polar. An imaginary line can be drawn through a water molecule separating the positive pole from the negative pole. This is because the charges are distributed asymmetrically. Carbon dioxide is nonpolar because the electronegative oxygens are distributed symmetrically around the carbon. (O=C=O)

Water is polar, because the charges are distributed asymmetrically. The electropositive hydrogens are attached to oxygen's two unpaired electrons..

Determine if each of the compounds listed below, IONIC, POLAR, or NONPOLAR as follows: [1] determine the types of bonds. [2] draw electron dot diagrams to determine the shape.

Compound	Type of Bond: IONIC, POLAR, or NONPOLAR	Electron Dot Diagram	Type of Compound : IONIC, POLAR, or NONPOLAR	Compound	Type of Bond: IONIC, POLAR, or NONPOLAR	Electron Dot Diagram	Type of Compound : IONIC, POLAR, or NONPOLAR
HCI		,		CCl₄			
CH₄	:			CH₃Cl			
Cl ₂		4-		N ₂			
KBr				H ₂ S			
NH ₃				NaBr			

Name	_ Class	Date
Activity 4-6	a en en en en en en	e de aventiro el esp eservicios de tarre
The Chemical Bond III		
Polar bonds and polar molecules		
1. How does a polar bond differ from a nonpolar bond?		The second secon
2. How does a polar bond differ from an ionic bond?		
	<u> </u>	
3. How is electronegativity difference used to help pre		? What values separate
ionic from polar covalent bonds?	1	
4. What is a dipole (polar molecule)?		
4. What is a dipole (polar molecule)?		
 5. How do polar bonds contribute to the polarity of a me 6. How can a molecule, such as CO₂ or CH₄, contribute to the polarity of a me 	olecule?	ds yet still be a non-
5. How do polar bonds contribute to the polarity of a me6. How can a molecule, such as CO₂ or CH₄, conpolar substance?	olecule?tain polar bor	ids yet still be a non
 5. How do polar bonds contribute to the polarity of a me 6. How can a molecule, such as CO₂ or CH₄, conpolar substance? 	olecule?tain polar bor	ids yet still be a non
 5. How do polar bonds contribute to the polarity of a me 6. How can a molecule, such as CO₂ or CH₄, controlled polar substance? 7. What physical properties are characteristic of dipoles 	olecule?	ds yet still be a non-
 5. How do polar bonds contribute to the polarity of a median. 6. How can a molecule, such as CO₂ or CH₄, compolar substance? 7. What physical properties are characteristic of dipoles. 	tain polar bor	ids yet still be a non-

	Describe two different conditions under which the ions of ionic solids become free to move.	
13.	Describe the electrical conductivity of ionic substances in the solid, liquid, and aqueous	
	solution phases.	
٠,	What two kinds of elements are most likely to react with each other to form binary ionic	
	compounds?	,
TI	ne metallic bond	
15.	Describe bonding in metallic solids.	
	What are the significant physical properties of metallic solids?	
H	/drogen bonding	
17.	Draw a diagram to illustrate hydrogen bonding between molecules of HF.	
	entre de la completa de la final de la completa de La completa de la co	
18.	Under what circumstances do hydrogen bonds form?	
19.	What properties are associated with compounds containing hydrogen bonds?	
Va	n der Waals forces	
-	in der Waals forces	
-	n der Waals forces	
20.	What is the source of van der Waals forces?	
20.	in der Waals forces	
20.	What is the source of van der Waals forces? What factors determine the magnitude of the van der Waals forces acting between molecules?	
20. 21.	What is the source of van der Waals forces? What factors determine the magnitude of the van der Waals forces acting between molecules?	
20.	What is the source of van der Waals forces? What factors determine the magnitude of the van der Waals forces acting between molecules?	

TYPES OF CHEMICAL BONDS

Name ____

Classify the following compounds as ionic (metal + nonmetal), covalent (nonmetal + nonmetal) or both (compound containing a polyatomic ion).

化分类性原性 医多类溶液体

1. CaCl₂

11. MgO

2. CO₂

12. NH₄Cl

3. H₂O

13. HCI

4. BaSO, ____

14. KI

5. K₂O

15. NaOH

6. NaF

16. NO₂

7. Na₂CO₃

17. AIPO₄

8. CH₄

18. FeCl₃

9. SO₃

19. P₂O₅

10. LiBr

20. N₂O₃ _____

IONIC BONDING

lonic bonding occurs when a metal transfers one or more electrons to a nonmetal in an effort to attain a stable octet of electrons. For example, the transfer of an electron from sodium to chlorine can be depicted by a Lewis dot diagram.

Calcium would need two chlorine atoms to get rid of its two valence electrons.

Show the transfer of electrons in the following combinations.

37.13.653	n a Te	
NAME:	DATE	
- 11 A4 - 3-2-1		

Hey, Who Took My Electron?

Background:

When atoms unite, attractive forces tend to pull the atoms together. These attractive forces are called chemical bonds, often referred to in shortened form as bonds. When a chemical bond forms, energy is released. When a chemical bond breaks, energy is absorbed. Hence, when two atoms are held together by a chemical bond, the atoms are at a lower energy condition than when they are separated.

In 1916, the American chemist Gilbert Newton Lewis proposed that chemical bonds are formed between atoms because electrons from the atoms interact with each other. Lewis had observed that many elements are most stable when they contain eight electrons in their valence shell. He suggested that atoms with fewer than eight valence electrons bond together to share electrons and complete their valence shells.

While some of Lewis' predictions have since been proven incorrect, his work established the basis of what is known today about chemical bonding. We now know that there are two main types of chemical bonding; ionic bonding and covalent bonding.

In ionic bonding, electrons are completely transferred from one atom to another. In the process of either losing or gaining negatively charged electrons, the reacting atoms form ions. The oppositely charged ions are attracted to each other by electrostatic forces, which are the basis of the ionic bond.

Procedure:

- 1) Give the electron configuration and Lewis dot diagram for each atom. Use dots for one set of valence electrons and ×s for the other element. You may also use two different colors to differentiate between the electrons form each element.
- 2) Determine how many electrons will be lost and gained.
- 3) Determine if any additional atoms are needed to make an even exchange of electrons.
- 4) Use arrows to show the electrons being transferred.
- 5) Give the electron configuration, Lewis dot diagram and charge for each ion formed.

Problems:

- 1) K and F
- 2) Ba and O

3)	Mg	and Cl	
-,	*'^5		

The State of the Atlanta

- 4) Al and Br services to the control of the services of the control of the contro
- 5) K and O
- 6) Cs and N

 Strong to the control of the control o

1. 1. 1. 1. 1. 1. 1.

- 8) Ca and P
- 9) Sc and I

Reflection:

What is the driving force behind bonding?

Questions:

- 1) What happens to the positive and negative ions created in the process of ionic bonding? Why?
- 2) A Ba⁺² ion differs from a Ba⁰ atom in that the ion has
- (1) More electrons
- (2) More protons
- (3) Less electrons
- (4) Less protons
- 3) Which Lewis electron-dot diagram to the right represents calcium oxide?
- (1) 1
- (2) 2
- (3) 3
- (4) 4

Explain each of the other three choices is wrong.

Cax:0:
$$\begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}^{2^{+}} O^{2^{-}}$$

COVALENT BONDING

	Name							
·.:			Service of the servic	7.5 3.55	1.50	v		

Covalent bonding occurs when two or more nonmetals share electrons, attempting to attain a stable octet of electrons at least part of the time. For example:

Note that hydrogen is content with 2, not 8, electrons.

Show how covalent bonding occurs in each of the following pairs of atoms. Atoms may share one, two or three pairs of electrons.

- 1. $H + H (H_2)$
- 2. $F + F (F_2)$
- 3. $O + O(O_2)$
- 4. $N + N (N_2)$
- 5. C + O (CO₂)
- 6. H + O (H,O)

•	Name		Class I	Date
	A_11.14		na igra no a idan a jeda	Y
	Activity			
	The Chen	nical Bond II		
	Covalent bo	nds		on a fi
ž	1. What role do val	ence electrons play in covalent bo	nding?	· .
		A single of the state of the st	a a gira a sa a maja da sa	Pandikul Kabana
	2. When atoms are	e bonded together covalently, w		
	3. What is a single of	covalent bond?	ist yssä mittyksi on sii kin. Soonasion on kokkisja on t	
•	5. What is a single o	covarent pond:		
			e i de la compania de	
	4. What is a double			
	5. What is a triple c	ovalent bond?	e de la companya de	
			•.	
			· · · · · · · · · · · · · · · · · · ·	1/2///
•	6. How is a coordin	nate covalent bond different from	an ordinary covalent b	ond?
			laa hada9	
	7. What kind of con	npound frequently shows coordina	te covalent bonds?	
		et German Constant que	. Alleg a sai disa.	4.4
				end in
			nalvatamiaia	
		s for molecules and		
	 Choose words f the construction meanings. 	from the word list to fill in the blands of dot diagrams. The list grands	anks in the following pa oups words that have co	aragraphs relating on relate
		Word List		
		atom(s)/ion(s)/molecule(s)	metal/nonmetal	
		eight/four error	O(oxygen) pairs	
		kernel/valence	share/transfer	
	When seems are	held together by covalent bon	ds. a	or a pol
		is formed. The elec		
	E6034114			

be used to construct dot diagrams for molecules and polyatomic
symbol for each element represents the nucleus andelectrons. Wi atoms form covalent (or coordinate covalent) bonds, each atom must share enough electrons fill its
fill its shell with at least a share in the total of
electrons, that is, pairs of electrons.
Constructing dot diagrams becomes a trial and process until reasonable structure is drawn. The following suggestions will help reduce the number of triand errors.
a. Choose a central atom, generally a(n) other than H or O, which bonded to not more than other atoms.
b. In ternary compounds, H atoms are generally bonded to atoms. c. Arrange atoms as symmetrically as possible around the central atom; try to represent the electrons of all atoms as of shared around the central atom; try to represent the electrons.
unshared electrons. The diagrams below represent CH ₂ Cl ₂ and HNO ₃ .
single H : C : Cl : H=O : N : O: single single single coordinate
CH ₂ Cl ₂ HNO,
Molecules
Construct dot diagrams for the following molecules. For molecules 11, 20, 21, 25, and 7, identify bond types as shown above.
12. Cl.
化对应性 化化二氯化甲基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙

10. H₂

11. PH

Name _____

Class_____ Date____

13. CHI,

21. HClO.

14. CH₃OH

22. N₂

15. H₂Te

23. H₂SO₄

16. OF₂

24. NH,

17. H₂S

25. HCN

18. PCl₃

26. HClO

19. SiO₂

27. C₂H₄

20. CO₂

28. C₂H₂

Molecular Structure

Hybdridization	# of o Bonds	# of Non- Bonding Pairs	Molecular Shape		Bond Angles	Example
sp	2	0		Linear	180°	
sp ²	3	0	\checkmark	Trigonal planar	120°	
sp ²	2	1	<u>`</u>	Angular	<120°	
sp ³	4	0	\downarrow	Tetrahedral ·	109.5°	
sp ³	3	1	<i>\(\frac{\frac}\fint}{\fint}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fra</i>	Trigonal pyramidal	<109.5°	
sp ³	2	2	~ <u>~</u>	Angular	<109.5°	
sp ³ d	5	0	\	Trigonal bipyramidal	120°, 90°	
sp ³ d	4	1	\Rightarrow	Sawhorse (irregular tetrahedron)	<120°, <90°	
sp³d	3	2		T-shaped	<90°	
sp ³ d	2	3	:	Linear	180°	
sp³d²	6	0	\times	Octahedron	90°	
sp ³ d ²	5	1	\times	Square pyramidal	<90°	
sp³d²	4	2	\times	Square planar	9 0°	

SHA	PES	OF	MOI	LECL	JLES
VI 1/7	if Eu	$\mathbf{v}_{\mathbf{i}}$			/

Name ____

Using VSEPR Theory, name and sketch the shape of the following molecules.

USII IÇ	y voerk i	heory, name and sketch the sho	
1.	N ₂		7. HF
		History and the second of the	gaga are in a second
2.	H ₂ 0		8. CH ₃ OH
3.	CO ₂		9, H ₂ S
		,	
4.	NH ₃		10. l ₂
_	•		
5.	CH₄		11. CHCI3
6.	SO ₃		12. O ₂
			·
ı			Annual Control of the

Student Handout 3 of 3: Intermolecular Forces

Ionic Ionic Ionic Ionic Bonding (strong) Ionic Bonding (strong) Ionic Ionic Ionic Bonding (strong) Ionic	Type of Substance	Structural Unit	Force between Units	Properties	Example
Molecular Molecular Molecular Molecular Molecular	lonic	m+ x- m+ x- m+ x- m+ x-	Bonding	Conducts electricity only when melted or dissolved Usually water soluble Insoluble in non-polar solvents ("like dissolves	
The stable of	Meleculer	a) non-polar molecules bonds	Forces (weak)	boiling point • Nonconducting, insoluble in H ₂ O	_
Covalent Network Solids -X-X-X	Molecular	x-x	Forces Dipole Hydrogen Bonding	boiling (higher than non- polar covalent solids) Nonconducting	NH3
Cations and mobile electrons Metallic m+ e- m+ e- e- m+ e-	Network		Bond (strong)	 VERY high melting point Non-conductors Insoluble in common solvents 	(diamond) SiO ₂ (glass sand quartz) Si
• May react with H ₂ O	Metallic	mobile electrons m+ e- m+ e- e- m+ e- m+ m+ e- m+ e-		is liquid at room temp. vs. Mg that melts at ~650°C) Insoluble in common solvents Malleable, ductile Good conductors	Hg Mg

\\\.		Bonding Hierarchy	•	E Cinama
Weak ————————————————————————————————————	Dipole	H-bonding	Metallic ionic	Strong Covalent bonds
low MM> high MM	slightly -> very polar -> polar	increases with more H atoms	large ions> small ions low charge> high charge	
@1994_PTAS. Inc.				Page 1 of 1