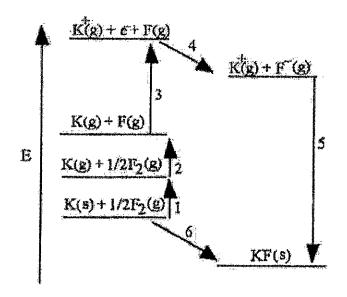
# Chemistry 106: General Chemistry Syracuse University Project Advance Final Exam, Fall 2014:

| Name: | Date: |
|-------|-------|
|-------|-------|


The last pages of the exam are reference tables.

## FUNDAMENTAL PHYSICAL CONSTANTS

(values from 2006 CODATA)

Atomic mass unit 1 ame =  $1.660538782 \times 10^{-27}$  kg  $V_m = 0.022413996 \text{ m}^3/\text{mol}$ Molar gas volume, = 22.413996 L/mol Avogadro's number  $N_A = 6.02214179 \times 10^{-23} \text{ mol}^{-1}$ Electron (proton) charge  $c = 1.602176487 \times 10^{-19}$  C Neutron mass  $m_n = 1.674927211 \times 10^{-27} \text{ kg}$  $h = 6.62506896 \times 10^{-34} \text{ J·s}$ Planck's constant Electron mass  $m_e = 9.10938215 \times 10^{-31} \text{ kg}$  $m_p = 1.672621637 \times 10^{-37} \text{ kg}$  $F = 9.64853399 \times 10^4$  C/mol Proton mass Faraday constant Speed of light (in  $c = 2.99792458 \times 10^8$  m/s (exact) Molar gas constant R 0.082058 L-atm/(K-mol) vacuum) 8.3145 J/(K·mol)\* Standard acceleration  $g = 9.80665 \text{ m/s}^2 \text{ (exact)}$ 8.3145 kg·m<sup>2</sup>/(s<sup>2</sup>·K·mol) of gravity 8.3145 kPa·dm<sup>3</sup>/(K·mol)

(1) The diagram below is a Born-Haber cycle for the formation of crystalline potassium fluoride. Which energy change shown in the cycle corresponds to the heat of <u>sublimation for potassium?</u>



- (A) 1 (B) 6
- (C) 4
- (D) 5
- (E) 2

- (2) A mole of the substance (compound) water, H<sub>2</sub>O, refers to:
  - (A)  $6.022 \times 10^{23}$  atoms of H and O
  - (B)  $6.022 \times 10^{23} \text{ H}_2\text{O}$  molecules (C)  $6.022 \times 10^{23} \text{ g H}_2\text{O}$

  - (D) 12.000 g H<sub>2</sub>O
  - (E) one H<sub>2</sub>O molecule
- (3) A block of wood has the dimensions of 1.2 m x 5.0 cm x 7.0 cm and has a mass of 3.0 kg. What is the density of the wood? (Note:  $1 \text{ mL} = 1 \text{ cm}^3$ )
  - (A) 0.71 g/mL
  - (B) 140 g g/mL
  - (C) 0.071 g/mL
  - (D) 1400 g/mL
  - (E) 1.4 g/mL
- (4) Choose the INCORRECT name/formula combination.
  - (A) NaClO<sub>2</sub>

sodium chlorite

(B)  $Sr(IO_3)_2$ 

strontium iodate

(C) NaClO<sub>4</sub>

sodium chlorate

(D) SCl<sub>4</sub>

sulfur tetrachloride

(E) NaClO

sodium hypochlorite

- (5) Maprotiline, a tetracyclic drug prescribed or the treatment of depression, has the following mass composition: C = 86.59%, H = 8.35%, and the rest is nitrogen. What is the empirical formula for maprotiline?
  - (A) C<sub>3</sub>H<sub>3</sub>N
  - (B) C<sub>7</sub>H<sub>8</sub>N<sub>3</sub>
  - (C)  $C_{14}H_{14}N$
  - (D)  $C_{20}H_{23}N$
  - (E)  $C_{87}H_8N_5$

(6) From ammonia gas, one can obtain two different gases, each of which is a pure substance.

Using only this information, it can be said with certainty that:

- (A) ammonia cannot be an element
- (B) one of the products is an element
- (C) gases do not produce solids
- (D) neither of the products can be an element
- (E) both products are elements

- (7) What is the frequency ( $s^{-1}$ ) of electromagnetic radiation that has a wavelength of 0.53 m?
  - A)  $1.6 \times 10^8$
  - B)  $1.3 \times 10^{33}$
  - C)  $1.3 \times 10^{-33}$
  - D)  $5.7 \times 10^8$
  - E)  $1.8 \times 10^{-9}$
- (8) A species that differs in the charge from another atom of the same element:
  - I) is called an isotope
  - II) has more or less neutrons
  - III) has lost or gained electrons
  - IV) is called an ion
  - V) has the same number of protons
  - (A) I and II
  - (B) I and III
  - (C) II and IV
  - (D) III and IV
  - (E) III, IV, and V
- (9) When the equation  $K_2S_2O_3 + I_2 \rightarrow K_2S_4O_6 + KI$  is balanced with the smallest integer coefficients, the coefficient of KI is:
  - (A) 4
  - (B)3
  - (C) 2
  - (D) 5
  - (E) 1
- (10) The molecular formula for caffeine is  $C_8H_{10}O_2N_4$ . How many moles of C atoms are present in a 2.0 g sample of caffeine?
  - (A) 0.32 mole
  - (B) 0.082 mole
  - (C) 0.27 mole
  - (D) 0.010 mole
  - (E) 0.041 mole

(11) 42.6 g of copper are combined with 84.0 g of HNO<sub>3</sub> according to the reaction:

$$3 \text{ Cu} + 8 \text{ HNO}_3 \longrightarrow 3 \text{ Cu(NO}_3)_2 + 2 \text{ NO} + 4 \text{ H}_2\text{O}$$

Which reagent is limiting and what is the theoretical yield of Cu(NO<sub>3</sub>)<sub>2</sub>?

- (A)  $HNO_3$ , 93.8 g
- (B) HNO<sub>3</sub>, 125.6 g
- (C) Cu, 125.6 g
- (D) Cu(NO<sub>3</sub>)<sub>2</sub>, 125.6 g
- (E) Cu, 93.8 g

- (12) Choose the correct statement.
  - (A) Neutrons have no change and no mass.
  - (B) Electrons and protons have about the same mass.
  - (C) An electron has 1/1837 the mass of a proton.
  - (D) The atomic number is the total number of protons and neutrons in the nucleus.
  - (E) The charge of a proton is 1837 times the charge of an electron.
- (13) The enthalpy change accompanying the reaction of 0.95 g of S in the flowing reaction is:

$$2 S(s) + 3 O_2(g)$$
 ---->  $2 SO_3(g)$   $\Delta H^{\circ} = -790 \text{ kJ}$ 

- (A) 380 kJ
- (B) -23 kJ
- (C) -47 kJ
- (D) -12 kJ
- (E) -790 kJ
- (14) What are the respective concentrations (M) of Mg<sup>2+</sup> and C<sub>2</sub>H<sub>3</sub>O<sub>2</sub><sup>-</sup> afforded by dissolving 0.600 mol Mg(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>2</sub> in water and diluting to 135 mL?
  - (A) 0.889 and 0.444
  - (B) 4.44 and 8.89
  - (C) 0.0444 and 0.0889
  - (D) 0.444 and 0.889
  - (E) 0.444 and 0.444

| (A) HCl (B) HNO <sub>3</sub> (C) HCN (D) HI (E) HClO <sub>4</sub>                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>(16) The temperature of a 35.2 g sample of iron increases from 23.7°C to 29.5°C. If the specific heat of iron is 0.450 J/g-K, how many joules of heat are absorbed?</li> <li>(A) 1.1 x 10³</li> <li>(B) 92</li> <li>(C) 0.450</li> <li>(D) 1100</li> <li>(E) 4.3</li> </ul> |
| (17) An electron cannot have the quantum numbers $n=\_\_$ , $1=\_\_\_$ , and $m_l=\_\_$ . (A) 3, 2, 3 (B) 3, 2, 1 (C) 6, 1, 0 (D) 3, 2, -2 (E) 1, 0, 0                                                                                                                               |
| <ul> <li>(18) What volume (mL) of a concentrated solution of potassium chloride (9.00 M) must be diluted to 350 mL to make a 2.75 M solution of potassium chloride</li> <li>(A) 2.75</li> <li>(B) 45.0</li> <li>(C) 107</li> <li>(D) 50.0</li> <li>(E) 350</li> </ul>                |
| (19) Which of the following has $\Delta H_f^{\circ} = 0$ ?  (A) $CO_2(g)$ (B) $Na(s)$ (C) $O_2(l)$ (D) $H_2O(l)$ (E) $NaCl(aq)$                                                                                                                                                      |

(20)  $\Delta H$  for the reaction

$$IF_5(g)$$
 ---->  $IF_3(g) + F_2(g)$ 

is \_\_\_\_\_ kJ, given the data below.

$$IF(g) + F_2(g) -----> IF_3$$
  $\Delta H = -390 \text{ kJ}$   $IF(g) + 2 F_2(g) -----> IF_5(g)$   $\Delta H = -745 \text{ kJ}$ 

- (A) + 1135
- (B) +35
- (C) -35
- (D) -1135
- (E) +355

(21) In a hydrogen atom, an electron in a \_\_\_\_\_ orbital can absorb a photon, but cannot emit a photon.

- (A) 3p
- (B) 3f
- (C) 1s
- (D) 3s
- (E) 2s

(22) The net ionic equation for the reaction between aqueous hydrochloric acid and aqueous sodium hydroxide is \_\_\_\_\_.

- (A) HCl(aq) + OH(aq) -----> Cl(aq) + H<sub>2</sub>O(l)
- (B)  $H^{+}(aq) + HCl(aq) + 2 OH^{-}(aq) 2 H_{2}O(1) + Cl^{-}(aq)$
- (C)  $H^{+}(aq) + Na^{+}(aq) + OH^{-}(aq) -----> H_{2}O(1) + Na^{+}(aq)$
- (D)  $H^{+}(aq) + OH^{-}(aq) -----> H_{2}O(1)$
- (E) HCl(aq) + NaOH(aq) -----> NaCl(aq) + H<sub>2</sub>O(l)

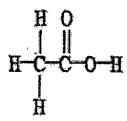
(23) A \_\_\_\_\_ AH corresponds to an \_\_\_\_\_ process.

- (A) positive, exothermic
- (B) zero, exothermic
- (C) zero, endothermic
- (D) positive, endothermic
- (E) large magnitude, exothermic

| (24) Given the data in the table belo                                                                                                                                                                                 | ow, $\Delta H^{\circ}_{rxn}$ for the                                                                                                                         | reaction is                                         | kJ.                                                        |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|----------------------------|
| $Ca(OH)_2(aq) + 2 H_3AsO_4$                                                                                                                                                                                           | (aq)> Ca(                                                                                                                                                    | H <sub>2</sub> AsO <sub>4</sub> ) <sub>2</sub> (aq) | + 2 H <sub>2</sub> O(l)                                    |                            |
| (A) -4219<br>(B) -744.9<br>(C) -4519<br>(D) -130.4<br>(E) -76.4                                                                                                                                                       | Substance<br>Ca(OH) <sub>2</sub> (aq)<br>H <sub>3</sub> AsO <sub>4</sub> (aq)<br>Ca(H <sub>2</sub> AsO <sub>4</sub> ) <sub>2</sub> (a<br>H <sub>2</sub> O(l) | q)                                                  | <u>f (kJ/mol)</u><br>-986.6<br>-900.4<br>-2346.0<br>-285.9 |                            |
| (25) The ground-state electron confi<br>(A) V<br>(B) Mn<br>(C) K<br>(D) Cr<br>(E) Fe                                                                                                                                  | iguration of                                                                                                                                                 | is [Ar]4                                            | rs <sup>1</sup> 3d <sup>5</sup> .                          |                            |
| (26) What is the oxidation number of (A) 0 (B) -2 (C) +4 (D) -4 (E) +2                                                                                                                                                | of S in SO <sub>2</sub> ?                                                                                                                                    |                                                     |                                                            |                            |
| (27) The first ionization energies of period of the periodic table, a group in the table.  (A) increase, increase (B) increase, decrease (C) decrease, increase (D) decrease, decrease (E) follow no clear pattern, a | and                                                                                                                                                          | as you go from                                      | go from left to rig<br>the bottom to th                    | ght across a<br>e top of a |

(28) Electrons in the 1s subshell are much closer to the nucleus in Ar than in He due to the larger in Ar.

- (A) angular momentum quantum number
- (B) Hund's rule
- (C) paramagnetism
- (D) nuclear charge
- (E) diamagnetism

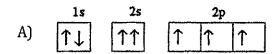

(29) The hybridization of carbon in the HCN molecule is \_\_\_\_\_.

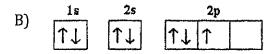
- (A) s<sup>2</sup>p (B) sp<sup>3</sup> (C) sp<sup>2</sup> (D) s<sup>3</sup>p
- (E) sp

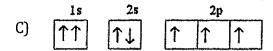
(30) The O-S-O bond angle in SO<sub>2</sub> is slightly less than \_\_\_\_\_.

- (A) 109.5°
- (B)  $180^{\circ}$
- (C) 90°
- (D) 120°
- (E) 60°

(31) The geometry of the right-most carbon in the molecule below is \_\_\_\_\_\_.





- (A) T-shaped
- (B) tetrahedral
- (C) trigonal pyramidal
- (D) trigonal planar
- (E) octahedral


| (32) Which of the following is an isoelectronic series?  (A) B <sup>5-</sup> , Si <sup>4-</sup> , As <sup>3-</sup> , Te <sup>2-</sup> (B) Si <sup>2-</sup> , P <sup>2-</sup> , S <sup>2-</sup> , Cl <sup>2-</sup> (C) O <sup>2-</sup> , F, Ne, Na <sup>+</sup> (D) F, Cl, Br, I  (E) S, Cl, Ar, K                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>(33) The basis of the VSEPR model of molecular bonding is</li> <li>(A) electron domains in the valence shell of an atom will arrange themselves so as to minimize repulsions.</li> <li>(B) atomic orbitals of the bonding atoms must overlap for a bond to form.</li> <li>(C) regions of electron density on an atom will organize themselves so as to maximize scharacter.</li> <li>(D) hybrid orbitals form as necessary to, as closely as possible, achieve spherical symmetry.</li> <li>(E) regions of electron density in the valence shell of an atom will arrange themselves so as to maximize overlap.</li> </ul> |
| <ul> <li>(34) The blending of one s atomic orbital and two p atomic orbitals produces</li> <li>(A) three sp³ hybrid orbitals.</li> <li>(B) two sp² hybrid orbitals.</li> <li>(C) two sp³ hybrid orbitals.</li> <li>(D) three sp² hybrid orbitals.</li> <li>(E) three sp hybrid orbitals.</li> </ul>                                                                                                                                                                                                                                                                                                                                |
| (35) The central iodine atom in ICl <sub>4</sub> <sup>-</sup> has non-bonded electron pairs and bonded electron pairs in its valence shell.  (A) 2, 4 (B) 1, 3 (C) 3, 2 (D) 2, 2 (E) 3, 4                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (36) Of the molecules below, only is polar.  (A) I <sub>2</sub> (B) SF <sub>6</sub> (C) CH <sub>4</sub> (D) SbF <sub>5</sub> (E) AsH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |


| (37) The reason that He diffuses faster than carbon monoxide, CO, is that He atoms are than CO molecules.  (A) lighter (B) less reactive (C) more spherical (D) smaller (E) less polar                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (38) How many moles of gas are there in a 50.0 L container at 22.0°C and 825 torr?  (A) 18.4  (B) 2.29 x 10 <sup>4</sup> (C) 0.603  (D) 1.70 x 10 <sup>3</sup> (E) 2.24                                                                                                             |
| <ul> <li>(39) Of the following, which is a correct statement of Boyle's law?</li> <li>(A) n/P = constant</li> <li>(B) V/P = constant</li> <li>(C) P/V = constant</li> <li>(D) PV = constant</li> <li>(E) V*T = constant</li> </ul>                                                  |
| <ul> <li>(40) A flask contains a mixture of He and Ne at a total pressure of 2.6 atm. There are 2.0 mol of He and 5.0 mol of Ne in the flask. The partial pressure of He is atm.</li> <li>(A) 1.86</li> <li>(B) 0.74</li> <li>(C) 6.5</li> <li>(D) 9.1</li> <li>(E) 1.04</li> </ul> |
| (41) Which of the following compounds is chromium(III) oxide?  (A) Cr <sub>3</sub> O  (B) Cr <sub>3</sub> O <sub>2</sub> (C) Cr <sub>2</sub> O <sub>3</sub> (D) Cr <sub>2</sub> O <sub>4</sub> (E) CrO <sub>3</sub>                                                                 |

- (42) The complete combustion of 1 mole of nitrobenzene, C<sub>6</sub>H<sub>5</sub>HO<sub>2</sub>, in a bomb calorimeter liberates 3088 kJ of heat and increases the temperature of the calorimeter assembly by 140.0°C. What is the heat capacity of this bomb calorimeter?
  - (A) 1.25 kJ/°C
  - (B) 22.1 kJ/°C
  - (C) 432 kJ/°C
  - (D) 43.1 kJ/°C
  - (E) 4.53 kJ/°C
- (43) A triple bond consists of
  - (A) two sigma and one pi bond
  - (B) three sigma bonds
  - (C) three pi bonds
  - (D) one sigma and two pi bonds
  - (E) three ionic bonds
- (44) Which one of the following is the correct electron configuration for a ground-state nitrogen atom?









- E) None of the above is correct
- (45) When NaCl dissolves in water, the force of attraction that exists between Na<sup>+</sup> and H<sub>2</sub>O is called:
  - (A) dipole-dipole
  - (B) ion-ion
  - (C) hydrogen bonding
  - (D) ion-dipole
  - (E) none of the above

- (46) The intermolecular force(s) responsible for the fact that H<sub>2</sub>O has the highest boiling point in the series H<sub>2</sub>O, H<sub>2</sub>S, H<sub>2</sub>Se, H<sub>2</sub>Te is/are
  - (A) hydrogen bonding
  - (B) dipole-dipole interactions
  - (C) London-dispersion forces
  - (D) mainly hydrogen bonding but also dipole-dipole interactions
  - (E) mainly London-dispersion forces but also dipole-dipole interactions
- (47) 24.2 g of a gas initially at 4.00 atm is compressed from 8.00 L to 2.00 L at constant temperature. What is the resulting pressure in atm of the gas?
  - (A) 4.00
  - (B) 2.00
  - (C) 1.00
  - (D) 8.00
  - (E) 16.0

### EXTRA CREDIT - SHOW ALL WORK

A 0.920 gram sample of magnesium is allowed to burn in 0.321 g of oxygen gas. The sole product of the reaction is magnesium oxide. After the reaction, no oxygen remains and 0.809 g of magnesium oxide has been formed. What mass of magnesium is left unreacted?

- (A) 0.432 g
- (B) 0.210 g
- (C) 0.488 g
- (D) 1.408 g
- (E) 0.111 g

| Soluble Ionic Compound    | s                                                                                                                                                                   | Important Exceptions                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Compounds containing      | NO <sub>3</sub> <sup>-</sup> C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> <sup>-</sup> Cl <sup>-</sup> Br <sup>-</sup> I <sup>-</sup> SO <sub>4</sub> <sup>2-</sup> | None<br>None<br>Compounds of Ag <sup>+</sup> , Hg <sub>2</sub> <sup>2+</sup> , and Pb <sup>2+</sup><br>Compounds of Ag <sup>+</sup> , Hg <sub>2</sub> <sup>2+</sup> , and Pb <sup>2+</sup><br>Compounds of Ag <sup>+</sup> , Hg <sub>2</sub> <sup>2+</sup> , and Pb <sup>2+</sup><br>Compounds of Sr <sup>2+</sup> , Ba <sup>2+</sup> , Hg <sub>2</sub> <sup>2+</sup> , and Pb <sup>2-</sup> |  |  |
| Insoluble Ionic Compounds |                                                                                                                                                                     | Important Exceptions                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Compounds containing      | S <sup>2-</sup> CO <sub>3</sub> <sup>2-</sup> PO <sub>4</sub> <sup>3-</sup> OH <sup>-</sup>                                                                         | Compounds of NH <sub>4</sub> <sup>+</sup> , the alkali metal cations, and Ca <sup>2+</sup> , Sr <sup>2+</sup> , and Ba <sup>2+</sup> Compounds of NH <sub>4</sub> <sup>+</sup> and the alkali metal cations Compounds of NH <sub>4</sub> <sup>+</sup> and the alkali metal cations Compounds of the alkali metal cations, and Ca <sup>2+</sup> , Sr <sup>2+</sup> , and Ba <sup>2+</sup>     |  |  |

· / .

6

| TABLE 4.5 | <b>Activity Series of Metals in Aqueous Solution</b>                       |
|-----------|----------------------------------------------------------------------------|
| Metal     | Oxidation Reaction                                                         |
| Lithium   | $Li(s) \longrightarrow Li^+(aq) + e^-$                                     |
| Potassium | $K(s) \longrightarrow K^+(aq) + e^-$                                       |
| Barium    | $Ba(s) \longrightarrow Ba^{2+}(aq) + 2e^{-}$                               |
| . Calcium | $Ca(s) \longrightarrow Ca^{2+}(aq) + 2e^{-}$                               |
| Sodium    | $Na(s) \longrightarrow Na^{+}(aq) + e^{-}$                                 |
| Magnesium | $Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-}$                               |
| Aluminum  | $Al(s) \longrightarrow Al^{3+}(aq) + 3e^{-}$                               |
| Manganese | $Mn(s) \longrightarrow Mn^{2+}(aq) + 2e^{-}$                               |
| Zinc      | $Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$                               |
| Chromium  | $Cr(s) \longrightarrow Cr^{3+}(aq) + 3e^{-}$                               |
| Iron      | $Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$                               |
| Cobalt    | $Co(s) \longrightarrow Co^{2+}(ag) + 2e^{-}$                               |
| Nickel    | $Ni(s) \longrightarrow Ni^{2+}(aq) + 2e^{-}$                               |
| Tin       | $\operatorname{Sn}(s) \longrightarrow \operatorname{Sn}^{2+}(ag) + 2e^{-}$ |
| Lead      | $Pb(s) \longrightarrow Pb^{2+}(aq) + 2e^{-}$                               |
| · drogen  | $H_2(g) \longrightarrow 2H^*(ag) + 2e^-$                                   |
| Copper    | $Cu(s) \longrightarrow Cu^{2+}(aq) + 2e^{-}$                               |
| Silver    | $Ag(s) \longrightarrow Ag^{+}(aq) + e^{-}$                                 |
| Mercury . | $Hg(l) \longrightarrow Hg^{2+}(aq) + 2e^{-}$                               |
| Platinum  | $Pt(s) \longrightarrow Pt^{2+}(aq) + 2e^{-}$                               |
| Gold      | $Au(s) \longrightarrow Au^{3+}(aq) + 3e^{-}$                               |

..

# Molecular Structure

| # of<br>o Bonds | # of Non-<br>Bonding Pairs | Molecular<br>Shape               |         |
|-----------------|----------------------------|----------------------------------|---------|
| 2               | 0                          | Linear                           |         |
| 3               | 0                          | Trigonal planar                  |         |
| 2 ·             | 1                          | Angular, Be                      | nt      |
| 4               | 0                          | Tetrahedral                      |         |
| 3               | 1                          | Trigonal pyramidal               | -       |
| 2               | 2                          | Angular , Bea                    | ,†      |
| 5               | . 0                        | Trigonal bipyramidal             |         |
| 4               | 1 .                        | Sawhorse (irregular tetrahedron) | see saw |
| 3               | 2                          | T-shaped                         |         |
| 2               | 3                          | : Linear                         |         |
| 6               | 0                          | Octahedron                       |         |
| 5               | 1                          | Square pyramidal                 |         |
| 4 .             | 2                          | Square planar                    |         |

# Periodic Table of the Elements

| 2<br>He<br>4.0026 | 70 Pe       | 20.180<br>18<br>Ar  | 39.948 | 36<br>Kr            | 20.00 | 54<br>Xe                         | 86<br>Rn           | ,                    |
|-------------------|-------------|---------------------|--------|---------------------|-------|----------------------------------|--------------------|----------------------|
|                   | <b>6</b> ⊭  | 18.998<br>17<br>CI  | 35.453 | 35<br>Br            |       | 53<br>I                          | 85<br>At<br>(210)  |                      |
|                   | 80          | 16<br>S             | 32.056 | 34<br>Se            |       | 52<br>Te                         | 84<br>Po           | ,                    |
|                   | r X         | 15<br>P             | 30.974 | 33<br>As<br>74.922  |       | 51<br>Sb<br>121.76               | 83<br>Bi<br>208.98 |                      |
|                   | ر<br>د<br>د | 14<br>Si            | 40.00D | 32<br>Ge<br>72.61   |       | 50<br>Sn:<br>118.71              | 82<br>Pb           |                      |
|                   | 70 B C      | 13<br>Al            | 786.07 | 31<br>Gå<br>69.72   |       | 49<br>In                         | 81<br>Ti<br>204.38 |                      |
|                   | ,           |                     |        | 30<br>Zn<br>65.39   |       | 48<br>Cd<br>112.41               | 80<br>Hg<br>200.59 |                      |
|                   |             |                     | **     | 29<br>Cu<br>63.546  |       | 47<br>Ag<br>107.87               | 79<br>Au<br>196.97 |                      |
|                   |             |                     |        | 28<br>Ni<br>58.69   |       | 46<br>Pd<br>106.42               | 78<br>Pt<br>195.08 |                      |
|                   |             |                     |        | 27<br>Co<br>58.933  |       | <b>45</b><br><b>Rh</b><br>102.91 | 77<br>Ir<br>192.22 | [109]<br>Mt<br>(268) |
| ·<br>•            |             |                     |        | 26<br>Fe<br>55.847  | ;     | Ru<br>101.07                     | 76<br>Os<br>190.2  | [108]<br>Hs<br>(265) |
|                   |             |                     |        | 25<br>Min<br>54.938 | ,     | Tc (98)                          | 75<br>Re<br>186.21 | [107]<br>Bh<br>(262) |
|                   |             |                     | ,      | Cr<br>51.996        | ę     | Mo<br>95.94                      | 74<br>W<br>183.85  | 106<br>Sg<br>(263)   |
|                   |             |                     | 3      | 50.942              | Ŧ     | Nb<br>92.906                     | 73<br>Ta<br>180.95 | 105<br>Db<br>(262)   |
|                   |             |                     | u      | Ti<br>47.88         | 40    | Zr<br>91.224                     | 72<br>Hf<br>178.49 | 104<br>Rf<br>(261)   |
| <del> </del>      |             |                     | . 21   | Sc<br>44.955        | 39    | X<br>88.906                      | 57<br>La<br>138.91 | 89<br>Ac<br>227.03   |
| 4                 | Be<br>9.012 | 12<br>Mg<br>24.31   | 20     | Ca<br>40.078        | 38    | Sr<br>87.62                      | 56<br>Ba<br>137.33 | 88<br>Ra<br>226.03   |
| 1.0079            | Li<br>6.941 | 1.1<br>Na<br>22.990 | 19     | K<br>39.098         | 37    | Rb<br>85.468                     | 55<br>Cs<br>132.91 | 87<br>Fr<br>(223)    |
|                   |             |                     | ٠      |                     |       |                                  |                    |                      |

| 71 -               | 103                |
|--------------------|--------------------|
| Lu                 | Lr                 |
| 174.96             | (260)              |
| 70                 | 102                |
| Yb                 | No                 |
| 173.04             | (259)              |
| . 69               | 101                |
| Tm                 | Md                 |
| 168.93             | (258)              |
| 68 Er              | 100                |
| Er                 | Fin                |
| 167.26             | (257)              |
| 67                 | 99                 |
| H0                 | Es                 |
| 164.93             | (252)              |
| 66                 | 98                 |
| Dy                 | Cf                 |
| 162.50             | (251)              |
| . 65<br>Tb         | 97<br>Bk<br>(247)  |
| 64                 | 96 -               |
| Gd                 | Cm                 |
| 157.25             | (247)              |
| 63                 | 95                 |
| Eu                 | Am                 |
| 151.96             | (243)              |
| 62<br>Sm<br>150.36 | 94.<br>Pu          |
| 61 Pm (145)        | 93<br>Np<br>237.05 |
| 60                 | 92                 |
| Nd                 | U                  |
| 144.24             | 238.03             |
| 59                 | . 91               |
| Pr                 | Pa                 |
| 140.91             | 231.04             |
| 58                 | 90                 |
| Ce                 | Th                 |
| 140.12             | 232.04             |
| Lanthanide Series  | Actinide Series    |