Project Advance Chemistry 116 Sample Questions on Material in General Chemistry, Brown, LeMay, and Bursten

Chapter 19. Chemical Thermodynamics Spring 1996

1. Which reaction below should have $\Delta S^{\circ} > 0$?

(a)
$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

(b)
$$2NO_2(g) \rightarrow N_2O_4(g)$$

(c)
$$H^+(aq) + F^-(aq) \rightarrow HF(aq)$$

(d)
$$BaF_2(s) \to Ba^{2+}(aq) + 2F^{-}(aq)$$

(e)
$$2Hg(l) + O_2(g) \rightarrow 2HgO(s)$$

2. The table shown below contains entropy values for four substances at 25°C. All of the values are correct except one. Which one is incorrect?

- (a) 203
- (b) 115
- (c) 158
- (d) 117
- (e) none of these.

Substance	S°(J/mol·K)
$F_2(g)$	203
$Cl_2(g)$	115
Br ₂ (l)	158
I ₂ (s)	117

3. Some standard entropies (at 25°C in J/mol·K) are: diamond, C, 2.43; oxygen, $O_2(g)$, 205.0; carbon monoxide, CO(g) 197.9. The change in entropy, ΔS° , for the reaction:

$$2C_{diamond} + O_2(g) \rightarrow 2CO(g)$$
 at 25°C is

- (a) -185.9
- (c) -9.5
- (e) -195.7

- (b) +185.9
- (d) +9.5

4. Using ΔG°_{f} values to calculate ΔG° for the reaction:

$$2Co(s) + 8PF_3(g) + H_2(g) \rightarrow 2HCo(PF_3)_4(g)$$

which species has/have $\Delta G^{\circ}_{f} = 0$?

(a) Co(s)

(b) $PF_3(g)$

(c) $H_2(g)$

(d) $HCo(PF_3)_4(g)$

(e) both Co(s) and $H_2(g)$

- 5. Dissolving ammonium chloride in water lowers the temperature of the system. For this dissolving process
 - (a) ΔH is negative and ΔS is negative.
 - (b) ΔH is positive and ΔS is positive.
 - (c) ΔH is negative and ΔS is positive.
 - (d) ΔH is positive and ΔS is negative.
- 6. Which one of the following processes has a negative standard free energy change at 25°C?

(a)
$$CO_2(g) + 2H_2O(l) \rightarrow CH_4(g) + 2O_2(g)$$

(b)
$$2Na(s) + 2H_2O(l) \rightarrow 2NaOH(aq) + H_2(g)$$

(c)
$$2H_2O(l) \rightarrow 2H_2(g) + O_2(g)$$

(d)
$$2KCl(s) \rightarrow 2K(s) + Cl_2(g)$$

- (e) none of these.
- 7. Consider the following thermodynamic data. All values are tabulated for 25°C.

Substance	$\Delta G^{\circ}_{f}(kJ/mol)$	S° (J/mol·K)
$C_2H_2(g)$	209	201
$C_2H_4(g)$	68	219
$C_2H_6(g)$	-33	230
H ₂ (g)	0	131
$H_2O(g)$	-229	189
C ₂ H ₅ OH(<i>l</i>)	-175	161

What is the value of ΔH° (in kJ) for the following reaction which takes place at 25°C.

$$C_2H_2(g) + 2H_2(g) \rightarrow C_2H_6(g)$$

- (a) -173
- (b) 236
- (c) -311
- (d) -248
- (e) none of these.

8. Consider the following table of thermodynamic data.

Substance	ΔG°_{f} (kJ/mol)	S° (J/mol·K)
NO(g)	86.7	211
$NO_2(g)$	51.8	240
NOCl(g)	66.3	264
$N_2O(g)$	103.6	220

The value of ΔS° for the following reaction is -117 J/K at 25°C. What is the entropy of $\text{Cl}_2(g)$ at 25°C?

$$2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$$

- (a) 106
- (b) 11
- (c) 223
- (d) -223
- (e) none of these.
- 9. For the reaction shown below $\Delta S^{\circ} = 135 \text{ J}$ and $\Delta G^{\circ} = 91.2 \text{ kJ}$ at 25°C.

$$C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$$

What is the value of ΔH° (in kJ) for this reaction at 25°C?

- (a) 40.3 kJ
- (b) 131.4 kJ
- (c) 226 kJ
- (d) 91.3 kJ
- (e) none of these.
- 10. Assuming ΔH and ΔS do not vary with temperature, a reaction that is not spontaneous at low temperatures can become spontaneous at high temperatures if ΔH is _____ and ΔS is

⁽a) positive, positive

⁽b) negative, negative

⁽c) positive, negative

⁽d) negative, positive

⁽e) not enough information to determine spontaneity.

- 11. The entropy of vaporization, ΔS°_{νφ}, for benzene is 96.4 J/K·mol. The enthalpy of vaporization, ΔH°_{νφ}, is 33.9 kJ/mol. What is the normal boiling point (in °C) for benzene?
 - (a) 2.8

(b) 0.35

(c) 100

(d) 79

- (e) none of these.
- 12. For the reaction $A(l) + 2D(g) \rightarrow 3X(g) + Z(s)$ $\Delta G^{\circ} = +512 \text{ kJ}$. This means that the equilibrium mixture
 - (a) will consist almost exclusively of A and D.
 - (b) will consist almost exclusively of A and Z.
 - (c) will consist almost exclusively of X and Z.
 - (d) will consist of significant amounts of A, D, X, and Z.
 - (e) has a composition predictable only if one knows T and ΔH .
- 13. Which one of the following statements is true about the equilibrium constant, K, for a reaction if ΔG° for the reaction is less than zero?
 - (a) K = 0

(b) K = 1

(c) K > 1

(d) K < 1

- (e) not able to determine.
- 14. The value of the equilibrium constant for a particular reaction is 0.48 at 25°C. What is the value of ΔG° (in kJ) for the reaction at 25°C? (R = 8.314 J/K·mol)
 - (a) 1.8
 - (b) -4.2
 - (c) 1.5×10^2
 - (d) 4.2
 - (e) none of these.
- 15. When the reaction below was run in a bomb calorimeter at 25°C it was exothermic by 627.0 kilojoules per mole of BaO₂ formed.

$$Ba(s) + O_2(g) \rightarrow BaO_2(s)$$

What is ΔH° (in kJ) for the reaction?

- (a) +624.5
- (b) + 1883
- (c) -629.5
- (d) -624.5
- (e) -627.0

Project Advance General Chemistry, CHE 116 Sample Questions Chapter 19, General Chemistry, Brown & LeMay

16. Which of the following reactions shows the least change in entropy?

(a)
$$C_6H_{10}(g) \rightarrow C_6H_6(g) + 2H_2(g)$$

(b)
$$3\text{Fe}_2\text{O}_3(s) \rightarrow 2\text{Fe}_3\text{O}_4(s) + \frac{1}{2}\text{O}_2(g)$$

(c)
$$C_6H_6(g) + 3H_2(g) \rightarrow C_6H_{12}(g)$$

(d)
$$Ag_2O_2 + H_2(g) \rightarrow 2Ag(s) + H_2O(g)$$

(e)
$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

17. In the reaction:

$$Mg(s) + \frac{1}{2}O_2(g) \rightleftharpoons MgO(s)$$
; $\Delta H^{\circ} = -602 \text{ kJ.mole}$
 $\Delta G^{\circ} = -569 \text{ kJ.mole}$

which of the following is true?

- (a) The large enthalpy insures that this reaction will spontaneously occur at any temperature.
- (b) The reaction is spontaneous because it is accompanied by an increase in entropy.
- (c) The negative free energy change means that the equilibrium must be displaced to the left (toward the reactants).
- (d) Because of the decrease in entropy both the free energy and enthalpy changes are negative.
- (e) The entropy factor is less significant than the enthalpy in determining the direction of this reaction.
- 18. Calculate K_p at 298 K for the following reaction, given the standard free energies of formation listed for each compound.

$$ZnO(s) + C(s) \rightleftharpoons Zn(s) + CO(g)$$

- (a) 9.66×10^{-74}
- (b) 1.63×10^3
- (c) 0.930
- (d) 1.98×10^{-32}
- (e) 6.14×10^{-4}

Compound	ΔG°, kJ/mole
ZnO(s)	-318.2
CO(g)	-137.3