Project Advance Chemistry 116 Sample Questions on Material in *General Chemistry*, Brown, LeMay, and Bursten

Chapter 26. Organic Chemistry Spring Semester 1995

1. Which of the following could be a cycloalkane?							
	(b) (c) (d)	C_6H_{14} C_4H_{10} C_5H_{12} C_6H_{12} C_3H_8					
2.	Which of the following could be an alkyne?						
	(b) (c) (d)	C_4H_8 C_2H_4 C_3H_6 C_4H_6 C_2H_6					
3. All of the following are structural isomers of C ₆ H ₁₄ except							
	(b) (c) (d)	CH ₃ (CH ₂) ₂ CH(CH ₃) ₂ CH ₃ (CH ₂) ₄ CH ₃ (CH ₃) ₂ CHCH ₂ CH ₃ CH ₃ CH ₂ C(CH ₃) ₃ (CH ₃) ₂ CHCH(CH ₃) ₂					
4. How many structural isomers are possible for hexane?							
	(a) (b) (c) (d) (e)	4					
5. How many structural isomers are possible for heptane?							
	(a) (b) (c) (d) (e)	3 7 5 4 9					
6.	The	CH ₂ CH ₃ is named as a derivative of					
	(a) (c) (e)		(b) (d)	heptane nonane			

7.	The compound	$(CH_3)_3CCH_2CH(CH_3)_2$ is named as a der	rivative of
----	--------------	---	-------------

(a) octane

(b) pentane

(c) butane

(d) hexane

- (e) heptane
- 8. The compound (CH₃)₃CCH₂CH(CH₃)₂ is
 - (a) named as a pentane but is an isomer of octane.
 - (b) named as a butane but is an isomer of octane.
 - (c) named as a pentane but is an isomer of heptane.
 - (d) named as a hexane but is an isomer of octane.
 - (e) named as a pentane but is an isomer of hexane.
- 9. For (CH₃)₂CHCH(CH₃)CH₂CH(CH₂CH₃)CH₂CH₂CH₃, the longest unbranched chain of carbon atoms is
 - (a) 8
 - (b) 6
 - (c) 7
 - (d) 9
 - (e) 12
- 10. The name of C(CH₃)₄ is
 - (a) isoproply methane
 - (b) 2-methylbutane
 - (c) isobutylmethane
 - (d) 2,2-dimethylpropane
 - (e) pentane
- 11. The compound 4-ethyl-2-hexene contains
 - (a) 7 carbon atoms and 14 hydrogen atoms.
 - (b) 6 carbon atoms and 12 hydrogen atoms.
 - (c) 8 carbon atoms and 18 hydrogen atoms.
 - (d) 6 carbon atoms and 14 hydrogen atoms.
 - (e) 8 carbon atoms and 16 hydrogen atoms.
- 12. The compound 1-chloro-1-pentene
 - (a) has the formula C_5H_7Cl .
 - (b) has the formula $C_5H_{11}Cl$.
 - (c) is an alkane.
 - (d) has 3 structural isomers.
 - (e) exists as cis and trans isomers.

13. The product of the hydrogenation of cis-2-butene is

(a) 2-butyne

(b) butane

(c) trans-2-butane

(d) cis-butane

(e) trans-butane

14. The compound 2-methyl-2-pentene

- (a) has 2 structural isomers each of which can be cis or trans.
- (b) exists as cis and trans isomers.
- (c) has 3 structural isomers.
- (d) has no structural or geometric isomers.
- (e) has 5 structural isomers.

15. The addition of HBr to 2-butene gives

- (a) 2-bromo-1-butene.
- (b) 1-bromobutane.
- (c) 2-bromobutane.
- (d) 2-bromo-2-butene.
- (e) butane.

16. Name the compound shown to the right:

- (a) 2-methyl-3-nitrobenzene
- (b) 1-nitro-2-methylbenzene
- (c) nitrotoluene
- (d) 1-methyl-2-nitrobenzene
- (e) nitrobenzene

17. Name the following compound

- (a) trans-2-pentene
- (b) cis-2-pentene
- (c) trans-1-ethyl-1-propene
- (d) trans-1-methyl-1-butene
- (e) ethylmethylethene

18. Name the following compound

- (a) cis-1,2-dichloro-2-ethylethene
- (b) trans-1,2-dichloro-1-butene
- (c) cis-1,2-dichloro-1-butene
- (d) cis-2-ethyl-1,2-dichloroethene
- (e) dichlorobutene

19. The product of the reaction of cis-2-butene with bromine is

- (a) 2,3-dibromobutane
- (b) cis-2-bromobutane
- (c) trans-2-bromobutane
- (d) cis-2,3-dibromobutane
- (e) 2,2-dibromobutane

20. Cyclohexane

- (a) has delocalized electrons.
- (b) is planar.
- (c) undergoes hydrogenation.
- (d) can adopt both a "chair" and a "boat" conformation.
- (e) has the formula C₆H₁₄.

21. Which of the following is an unsaturated hydrocarbon?

- (a) cyclohexane
- (b) CH₃CH(Cl)CH₃
- (c) CH₃CH(CH₃)CH₃
- (d) CH₃CHCHCH₂CH₃
- (e) $CH_3C(CH_3)_2CH_2CH(CH_3)_2$

22. The hydroxyl group occurs in

- (a) alcohols, phenols and carboxylic acids.
- (b) aldehydes and ketones.
- (c) carboxylic acids and ketones.
- (d) phenois, aldehydes and ketones.
- (e) alcohols and aldehydes.

- 23. The carbonyl group occurs in all of the following except
 - (a) aldehydes
 - (b) amides
 - (c) carboxylic acids
 - (d) phenols
 - (e) ketones
- 24. The ester CH₃(CH₂)₂C(O)O(CH₂)₄CH₃ is responsible for the odor of bananas. It can be prepared from
 - (a) CH₃(CH₂)₂CH₂OH and CH₃(CH₂)₃CH₂OH
 - (b) CH₃(CH₂)₂CH₂OH and CH₃(CH₂)₃COOH
 - (c) CH₃(CH₂)₂CHO and CH₃(CH₂)₃CH₂OH
 - (d) CH₃(CH₂)₂CH₂OH and CH₃(CH₂)₃CHO
 - (e) CH₃(CH₂)₂COOH and CH₃(CH₂)₃CH₂OH
- 25. When an ester is formed via a condensation reaction with the elimination of water, the oxygen atom in the water molecule comes from
 - (a) the aqueous solution.
 - (b) the carbonyl group of the acid.
 - (c) the alcohol.
 - (d) the hydroxyl group of the acid.
 - (e) the aldehyde.

Project Advance Chemistry 116 Sample Questions on Material in General Chemistry, Brown, LeMay, and Bursten

Chapter 26. Organic Chemistry Spring Semester 1996

- 1. The answer that fits the formula CH₃CH₂Cl is
 - (a) chloromethane
 - (b) ethyl chloride
 - (c) ethylene chloride
 - (d) vinyl chloride
 - (e) none of these.
- 2. The answer that fits the formula CH₃CH₂Cl is
 - (a) alkyl chloride
 - (b) chloromethane
 - (c) ethylene chloride
 - (d) vinyl chloride
 - (e) none of these.
- 3. Which of the following is the correct equation for the formation of acetylene from calcium carbide?
 - (a) $CaC_2 + 2 H_2 \rightarrow CH = CH + 2Ca$
 - (b) $CaC_2 + 2 H_2 \rightarrow CH_2 = CH_2$
 - (c) $Ca_2C_2 + 4 H_2O \rightarrow CH_2 = CH_2 + 2 Ca(OH)_2$
 - (d) $CaC_2 + 2 H_2O \rightarrow CH = CH + Ca(OH)_2$
 - (e) none of these.
- 4. The name of this compound, , is
 - (a) naphthalene
 - (b) phenanthrene
 - (c) triphenyl
 - (d) tribenzyl
 - (e) anthracene
- 5. Which of the following will show geometric isomerism?
 - (a) $CH_3CH = CH_2$
 - (b) CH₃CH₂CH=CHCH₂CH₃
 - (c) $(CH_3)_2C = C(CH_3)_2$
 - (d) $CH_2 = CHCH_2CH_2CH_3$
 - (e) CH₃CH₂CH₂CH₂CH₂CH₂CH₃

- 6. Isopropyl alcohol, CH₃CH(OH)CH₃, is a
 - (a) primary alcohol
 - (b) secondary alcohol
 - (c) tertiary alcohol
 - (d) glycol
 - (e) none of these.
- 7. An example of a tertiary alcohol is
 - (a) $(CH_3)_3C-OH$
 - (b) $(CH_3)_2C=0$
 - (c) CH₃CH₂CH₂C-OH
 - (d) $(CH_3)_2CH$ -O- $CH_2CH_2CH_3$
 - (e) none of these.
- 8. The tenth member of the alkanes has
 - (a) 20 hydrogen atoms
 - (b) 10 hydrogen atoms
 - (c) 12 hydrogen atoms
 - (d) 22 hydrogen atoms
 - (e) 18 hydrogen atoms
- 9. The chief product when 2-butanol is heated with 50% sulfuric acid at 100°C is
 - (a) $CH_3CH = CHCH_3$
 - (b) $CH_3CH_2CH = CH_2$
 - (c) CH₃CH₂C(CH₃)H-O-C(CH₃)HCH₂CH₃
 - (d) CH₃CH₂C0CH₃
 - (e) CH₃CH₂CH₂CH₃
- 10. Which of these alcohols will not give a ketone when oxidized?
 - (a) 1-pentanol
 - (b) 2-pentanol
 - (c) 3-pentanol
 - (d) 2-butanol
 - (e) 2-hexanol
- 11. CH₃CH₂-NH-CH₃ is named:
 - (a) hydrogen methylethyl nitride
 - (b) methylethyl amide
 - (c) methylethyl ammonia
 - (d) methylethyl cyanide
 - (e) methylethylamine

12. Which of the following statements is(are) true?

- I. A methane molecule is composed of a carbon atom bonded to four hydrogen atoms. All five atoms lie in the same plane, and all bond angles are 90°.
- II. Alkanes are also known as paraffins or saturated hyrdocarbons.
- III. Isobutane is named 2-methylpropane by the IUPAC naming system.
- IV. The general formula for an alkane is C_nH_{2n+2} .
- V. The products of the complete combustion of a hydrocarbon are carbon dioxide and water.
- VI. The compound, 2,2,5,5-tetramethylhexane, contains 12 carbon atoms.
- (a) All the above statements are true.
- (b) II, III, IV and V are true.
- (c) Only II and IV are true.
- (d) II, III, V and VI are true.
- (e) None of the above statements is true.
- 13. Which one of the following molecules does not contain a double bond?
 - (a) CH₃CHO

(b) CH₃CH₂OH

(c) CO₂

(d) CH₃CHCH2

- (e) SO₂
- 14. How many different butyl alcohols are there?
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
 - (e) 5
- 15. Which of the following compounds displays optical isomerism?
 - (a) CH_2-CH_2 | | OH OH

- (c) CH₂=CHCl
- (d) CHCl=CHCl
- (e) $CH_3-O-C_2H_5$

Which of the following drugs are not optically active? 16.

(a)
$$\begin{array}{c} NH_2 \\ \downarrow \\ -CH_2CHCH_3 \end{array}$$

Benzedrine

Symmetrel

Atropine

Lysergic acid diethylamide - LSD

none of these. (e)

17. Which of the following statements is(are) true?

- I. A double bond consists of two equivalent bonds called pi bonds.
- II. When hydrogen chloride reacts with $CH_2 = CH_2$, the product is $CH_2 = CHC1$.
- III. The compound $CH_3CH = CHCH_3$ can have *cis-trans* isomers.
- IV. The reactions of benzene show that it has three double bonds.
- V. There is free rotation around a carbon-carbon double bond.
- VI. 2-butene and 2-methyl-2-butene can both have cis-trans isomerism.
- VII. Modern theory of the benzene structure includes π -bonding above and below the plane of the hexagon, and between all adjacent carbon atoms.
- (a) All the above statements are true.
- (b) I, II, IV, V and VII are true.
- (c) Only III and VI are true.
- (d) Only III and VII are true.
- (e) None of the above statements is true.

18. Which of the following statements is(are) true?

- I. Glycerol (glycerine) is a trihydroxy alcohol.
- II. Alcohols have higher boiling points than ethers of comparable molecular weight.
- III. Ethanol and dimethyl ether are isomers.
- IV. Ethylene glycol is the major component of "permanent" types of antifreezes.
- V. The compound, \uparrow , is called *m*-bromophenol.
- VI. CH₃OH is commonly called wood alcohol.
- (a) All the above statements are true.
- (b) I, II, IV and VI are true.
- (c) Only IV and VI are true.
- (d) III, IV and VI are true.
- (e) None of the above statements is true.

- 19. Which of the following statements is(are) not true?
 - I. The carboxyl group is -c.
 - II. An amine has the general formula R-NH₂.
 - III. Carboxylic acids become less water soluble as the number of carbon atoms increases.
 - IV. Low and intermediate molecular weight esters usually have fragrant or fruity characteristic odors.
 - V. A soap or synthetic detergent is able to clean oil and grease because part of the molecule is highly water soluble and the other part, a long carbon chain, is soluble in the oil or grease.
 - VI. Ring compounds in which all the atoms of the ring itself are not alike are called heterocyclic compounds.
 - VII. A compound of formula C₆H₁₂O cannot be a carboxylic acid.
 - (a) All the above statements are faise.
 - (b) Only VII is false.
 - (c) Only I is false.
 - (d) II, III, and VII are false.
 - (e) None of the above statements is false.

		*