Project Advance Chemistry 106 Study Questions on Material in *General Chemistry*, Brown, LeMay, and Bursten

Chapter 5. Energy Relationships in Chemistry. Thermochemistry

Fall Semester 1996

- 1. Which one of the following will have a greater kinetic energy?
 - (c) a 10 kg object traveling at 5 m/s
 - (b) a 5 kg object traveling at 10 m/s
 - (c) both of these have the same kinetic energy
 - (d) Not enough information given to make a decision.
- 2. One Joule equals
 - (a) 2 kg
 - (b) 4.184 cal
 - (c) 1 g·cm/s
 - (d) none of these
 - (e) $1 \text{ kg} \cdot \text{m}^2/\text{s}^2$
- 3. Calculate the kinetic energy in J of an electron (mass = 9.11×10^{-28} kg) moving at 6.00×10^6 m/s.
 - (a) 2.49×10^{-48}
 - (b) 3.28×10^{-14}
 - (c) 6.56×10^{-14}
 - (d) 4.98 X 10⁻⁴⁸
 - (e) 1.64 X 10⁻¹⁴
- 4. According to the first law of thermodynamics
 - (a) energy is conserved during any process
 - (b) the entropy of a pure, crystalline substance at absolute zero is zero
 - (c) the amount of work done during a change is independent of the pathway of that change
 - (d) all spontaneous processes are accompanied by an increase in disorder
 - (e) none of the above.

Study Questions

system?

- 5. Which one of the following conditions would always result in an increase in ΔE for a
 - the system gains heat and has work done on it by the surroundings
 - (b) the system gains heat and does work on the surroundings
 - (c) the system loses heat and has work done on it by the surroundings
 - the system loses heat and does work on the surroundings
 - none of the above.
- 6. Which one of the following reactions has a negative value for ΔH° ?
 - (a) $C(s) + O_2(g) \rightarrow CO_2(g)$
 - (b) $CO_2(s) \rightarrow CO_2(g)$
 - (c) $2H_2O(1) \rightarrow 2H_2(g) + O_2(g)$
 - (d) $NH_3(1) \rightarrow 2H_2(g) + O_2(g)$
 - (e) None of the above.
- 7. The value of ΔH° for the following reaction is -482 kJ. Determine the amount of heat (in kJ) exchanged with the surroundings when 12.0 g of CO(g) completely reacts.

$$2CO(g) + O2(g) \rightarrow 2CO_2(g)$$

- (a) 2.89×10^3
- (b) 207
- (c) 65.7
- (d) 103
- (e) None of the above.
- 8. The value of ΔH° for the reaction below is -336 kJ. Determine the amount of heat (in kJ) exchanged with the surroundings when 23.0 g of HCl is formed.

$$CH_4(g) + 3Cl_2(g) \rightarrow CHCl_3(l) + 3HCl(g)$$

- (a) 2.57×10^3
- (b) 70.7
- 177 (c)
- (d) 211
- (e) None of the above.

9. The value of ΔH° for the following reaction is -186 kJ. How many kJ of heat would be evolved from the reaction of 25 g of Cl_2 ?

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

- (a) 5.3×10^2
- (b) 65
- (c) 47
- (d) 33
- (e) None of the above.
- 10. The value of ΔH° for the following reaction is -186 kJ. Calculate the value of ΔH_{f}° (in kJ/mol) for HCl(g).

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

- (a) -1.27×10^2
- (b) -3.72 X 10²
- (c) -186
- (d) -93.0
- (e) none of the above.
- 11. For the reaction: $2Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$ $\Delta H^{\circ} = -3351$ kJ. The reaction is _____ and therefore heat is ____.
 - (a) endothermic, evolved
 - (b) exothermic, evolved
 - (c) exothermic, absorbed
 - (d) endothermic, absorbed
- 12. From the reaction:

$$2Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s); \Delta H^{\circ} = -3351 \text{ kJ}$$

determine the value of ΔH_f° (in kJ) for $Al_2O_3(s)$.

- (a) -32.86
- (b) -16.43
- (c) -3351
- (d) -1676
- (e) None of the above.

- 13. Fifty, 50.0, mL of 1.0 M HCl were mixed with 50.0 mL of 1.0 M NaOH in a coffee cup calorimeter. The resulting solution changed temperature from 23.0°C to 29.8°C. Which one of the following is not true concerning this experiment? Assume the resulting solution had the density and specific heat of pure water.
 - (a) for this reaction, $q_{rxn} = -2.84 \text{ kJ}$
 - (b) 2.8 kJ of heat were transferred during the process
 - (c) the reaction was exothermic
 - (d) the heat flow monitored during this process was monitored under constant pressure
 - (e) none of the above.
- 14. A 1.96 g sample of titanium was burned in a bomb calorimeter that had a heat capacity of 9.84 kJ/°C. The temperature of the calorimeter increased from 36.84°C to 98.82°C. Calculate the amount of heat that would be released from the combustion of one mole of titanium.
 - (a) 311 kJ
 - (b) 1200 kJ
 - (c) $1.49 \times 10^4 \text{ kJ}$
 - (d) 610 kJ
 - (e) 62.0 kJ
- 15. For the reaction: $HCl(aq) + KOH(aq) \rightarrow H_2O(l) + KCl(aq) \Delta H^{\circ}$ is -56.0 kJ. If the specific heat of the solution resulting from neutralization of 50.0 mL of 0.220 M HCl with 0.400 M KOH is 4.18 J/g·°C and the initial temperature is 22.2°C, what is the final solution temperature? (Assume the density of the solution to be 1.01 g/mL.)
 - (a) 24.1°C
 - (b) 41.1°C
 - (c) 36.9°C
 - (d) 3.4°C
 - (e) 27.8°C
- 16. Given the values of ΔH° for the two reactions below, what is ΔH° in kJ for the reaction: $IF_5(g) \rightarrow IF_3(g) + F_2(g)$?

$$IF(g) + F_2(g) \rightarrow IF_3(g)$$
 $\Delta H^\circ = -390 \text{ kJ}$
 $IF(g) + 2F_2(g) \rightarrow IF_3(g)$ $\Delta H^\circ = -745 \text{ kJ}$

- (a) -1135
- (b) +1135
- (c) +35
- (d) -35
- (e) +355

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$
 $\Delta H^\circ = -28.0 \text{ kJ}$

Page 5

$$3\text{Fe} + 4\text{CO}_2 \rightarrow 4\text{CO} + \text{Fe}_3\text{O}_4$$
 $\Delta \text{H}^\circ = +12.5 \text{ kJ}$

Calculate the value of ΔH° for:

$$3\text{Fe}_2\text{O}_3 + \text{CO} \rightarrow \text{CO}_2 + 2\text{Fe O}_4 \qquad \Delta\text{H}^\circ = ?$$

- -59.0 kJ (a)
- -109 kJ **(b)**
- -15.5 kJ (c)
- 40.5 kJ (d)
- none of the above. (e)
- 18. Consider the following reactions and their associated values of ΔH° .

$$N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$$
 $\Delta H^{\circ} = 66.4 \text{ kJ}$

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$
 $\Delta H^{\circ} = -114.2 \text{ kJ}$

What is the value of ΔH° for the reaction shown below?

$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$

- 90.3 kJ (a)
- -47.8 kJ (b)
- 47.8 kJ (c)
- (d) 181 kJ
- None of the above. (e)
- 19. For which one of the following reactions is the ΔH° a heat of formation?

(a)
$$12C(g) + 11H_2(g) + 11O(g) \rightarrow C_6H_{22}O_{11}(g)$$

(b)
$$P(g) + 4H(g) + Br(g) \rightarrow PH_4Br(l)$$

(c)
$$\frac{1}{2}N2(g) + O_2(g) \rightarrow NO_2(g)$$

(d)
$$6C(s) + 6H(g) \rightarrow C_6H_6(g)$$

(e)
$$N_2(g) + 3H_2(g) \rightarrow 2NH3(g)$$

20. The value of ΔH° for the reaction shown below is 44 kJ. What is the value of $\Delta H_{\rm f}^{\circ}$ for $H_2O(g)$?

$$H_2O(l) \rightarrow H_2O(g)$$

- (a) 242
- (b) -242
- (c) 330
- (d) -330
- 21. What is the value of ΔH° for the following reaction?

$IF_5(g)$	+	$F_2(g)$	→	$IF_7(g)$
-----------	---	----------	----------	-----------

- (a) -1801 kJ
- (b) -121 kJ
- (c) 121 kJ
- (d) 1801 kJ
- (e) None of the above.

- Substance $\Delta H_f^{\circ}(kJ/mol)$ IF(g) -95

 IF₅(g) -840

 IF₇(s) -941
- 22. For the reaction given below ΔH° is -390 kJ. What is the value of ΔH_{f}° (in kJ/mol) for IF₃(g)? (Use the data in the previous question.)

$$IF(g) + F_2(g) \rightarrow IF_3(g)$$

- (a) 295
- (b) -295
- (c) 485
- (d) -485
- (e) none of the above.
- 23. Compute ΔH° in kJ for the following reaction.

$$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$$

- (a) -566.4
- (b) -283.3
- (c) 283.3
- (d) -677.0
- (e) none of the above.

Substance	ΔH _f °(kJ/mol)
CO(g)	-110.5
$CO_2(g)$	-393.7
$CaCO_3(s)$	-1207

Project Advance General Chemistry, CHE 106 Chapter 5, General Chemistry, Brown & LeMay **Study Questions**

- Which one of the choices below is not considered a fossil fuel? 24.
 - crude oil (a)
 - anthracite coal (b)
 - (c) hydrogen
 - natural gas (d)
 - (e) peat
- The average fuel value of sugar is 17 kJ/g. A 2.0 L pitcher of sweetened Kool-Aid 25. contains 400 g of sugar. What is the fuel value (in kJ) of a 500 mL serving of Kool-Aid? (Assume the sugar is the only fuel source.)
 - 1.7×10^{2} (a)
 - 1.7 X 10⁶ (b)
 - 1.7×10^3 (c)
 - 4.2 X 10⁴ (d)
 - none of the above. (e)