Project Advance Chemistry 106 Sample Questions on Material in *General Chemistry*, Brown, LeMay, and Bursten, 6th ed. #### Chapter 6. Electronic Structure of Atoms 1. Electromagnetic radiation of which of the following wavelengths (in nm) is of the lowest | | energy? | | | |----|---|-------|--| | | (a) 526
(c) 623
(e) 532 | | 493
277 | | 2. | Which one of the following is not a form of ele | ctro | magnetic radiation? | | | (a) radiant heat (c) gamma rays (e) sound waves | | radio waves microwaves | | 3. | Ham radio operators often broadcast on the 6 r of this electromagnetic radiation? | neter | band. What is the frequency (in MHz) | | | (a) 500
(c) 50
(e) none of these. | | 200
20 | | 4. | Which of the following transactions in the Boh highest-energy photon? $(n_f = n_{final})$ | r hy | drogen atom model afford emission of the | | | (a) $n_1 = 1 \rightarrow n_f = 6$
(b) $n_1 = 6 \rightarrow n_f = 3$
(c) $n_1 = 3 \rightarrow n_f = 6$
(d) $n_1 = 4 \rightarrow n_f = 1$
(e) $n_1 = 6 \rightarrow n_f = 1$ | | | | 5. | Which one of the following electron transitions hydrogen atom? | s wo | uld result in the loss of energy from a | | | (a) $n = 7$ to $n = 9$
(b) $n = 7$ to $n = 5$
(c) $n = 5$ to $n = 6$
(d) $n = 1$ to $n = 2$
(e) $n = 3$ to $n = \infty$ | | | | 6. | What is the frequency (in Hz) of electromagne from n=2 to n=4 in a hydrogen atom? | tic r | adiation necessary to move an electron | | | (a) 6.2×10^{14} | (b | 1.1×10^{-19} | (d) 8.2×10^{14} (c) 5.4×10^{-19} (e) none of these. | 7. The maximum number of electrons that can exist at the $n=3$ level of an atom is: | | | | | | | |--|--|---|--|--|--|--| | | (a) 18
(c) 8
(e) none of these. | (b) 12
(d) 4 | | | | | | 8. | The de Broglie wavelength of an electron is 8.9.1 \times 10 ⁻³¹ kg. What is the velocity (in m/s) | 7×10^{-11} m. The mass of this electron is of this electron? | | | | | | | (a) 8.4×10^3
(c) 6.9×10^{-54}
(e) none of these. | (b) 1.2×10^{-7}
(d) 8.4×10^{6} | | | | | | 9. | Two electrons in the same atom which have in m_{ℓ} are said to be in | dentical values of quantum numbers n , l , and | | | | | | (a) the same shell and subshell, but different orbitals. (b) the same shell, but different subshells and orbitals. (c) the same shell, subshell, and orbital. (d) the same subshell and orbital, but different shells. (e) different shells, subshells, and orbitals. 10. Which of the subshells below do not exist. | | | | | | | | | I. 2d II. 2s III. 2p IV. 1p | V. 6 <i>f</i> | | | | | | | (a) II, III, and V (c) IV only (e) I and IV | (b) I only (d) I, IV, and V | | | | | | 11. | Which one of the following electron configurations a photon of light, but not emit one? | rations would allow a hydrogen atom to absorb | | | | | | | (a) 3s (c) 3p (e) none of these. | (b) 2s
(d) 1s | | | | | | 12. | Which set of quantum numbers cannot be co | errect? | | | | | | | (a) $n=6$, $\ell=0$, $m_{\ell}=0$
(b) $n=3$, $\ell=2$, $m_{\ell}=3$ | .9 | | | | | (c) n=3, $\ell=2$, $m_{\ell}=-2$ (d) n=1, $\ell=0$, $m_{\ell}=0$ (e) none of these. | 13. | For the $4d_{yz}$ orbital, the yz specifies in | :s | | |-----|---|--|-----| | | (a) size(c) spatial orientation(e) degree of degeneracy | (b) shape
(d) electron spin | | | 14. | In the wave-mechanical model, the gonumber() | eneral shape of an orbital is determined by the quantu | III | | | (a) m_s (c) l (e) both m_t and m_s | (b) m _t (d) n | | | 15. | A major effect of the Pauli Exclusion | rule is to allow | | | | (a) only one subshell in the first election only seven electron shells total forms. (b) only seven electron shells total forms. (c) three orbitals in the 3p subshell. (d) three orbitals in any p subshell. (e) no more than two electrons per orbitals. | or any atom. | | | 16. | Which one of the following represent order n , ℓ , m_t , m_s) | ts a possible set of quantum numbers (in the | | | | (a) 2, 1, -1, ½
(b) 2, 1, 0, 0
(c) 2, 2, 0, ½
(d) 2, 0, 1, -½
(e) none of these. | | | | 17. | Which one of the following represent in an atom? (arranged in the order n | ts an incorrect set of quantum numbers for an electro, ℓ , m_{ℓ} , m_{s}) | nc | | | (a) 2, 1, -1, -1/2
(b) 1, 0, 0, 1/2
(c) 3, 3, 3, 1/2
(d) 5, 4, -3, 1/2
(e) none of these. | | | | 18. | Which one of the following orbitals | can hold two electrons? | | | | (a) 2p_x (c) 4d_{xy} (e) none of the above. | (b) 3s (d) all of the above. | | | | | · | | | 19. | | any elect
xenon? | rons pop | ulate the | e com | plete 3 <i>p</i> | electron subshell in the ground state of | |-----|--------------------------|---------------------|----------------|------------|----------|------------------|--| | | (a) 2
(c) 8
(e) 36 | | | | | | (b) 6
(d) 10 | | 20. | Which | one of th | e followi | ng orbi | al dia | grams v | violates the Pauli Exclusion Principle? | | | (a) | <u>† ‡</u> | <u>† ‡</u> | <u>†</u> | <u>†</u> | _ | | | | (b) | ++ | <u>+</u> + | <u>†</u> | | <u>†</u> | | | | (c) | <u>+ +</u> | <u>†</u> | <u>†</u> | † | <u>†</u> | | | | (d) | <u>†</u> † | <u>† †</u> | <u>†</u> | <u>†</u> | _ | | | | (e) | none of | these. | | | | | | 21. | | one of the | | ng orbi | al dia | grams : | shows a violation of Hund's Rule for an atom | | | (a) | <u>† †</u> | ++ | <u>†</u> | _ | _ | | | | (b) | <u>+</u> + | + + | <u>†</u> | _ | <u>†</u> | | | | (c) | <u>†</u> ‡ | <u>+</u> + | <u>†</u> ‡ | <u>†</u> | _ | | | | (d) | <u>†</u> | | | _ | _ | | | | (e) | none of | these. | | | | | | 22. | Which | diagram 1 | represents | s an ato | m in | the grou | und state? | | | (a) | <u>†</u> | ++ | | _ | _ | | | | (b) | <u>† † </u> | <u>+</u> + | _ | | _ | | (c) (d) (e) none of these. | 23. Which one of the following official diagrams represents an exercise a | 23. | Which one of the following | orbital | diagrams | represents | an excited | atom | |---|-----|----------------------------|---------|----------|------------|------------|------| |---|-----|----------------------------|---------|----------|------------|------------|------| (e) none of these. ### 24. Which one of the following elements is represented by the orbital diagram shown below? $$\frac{\uparrow \downarrow}{1s} \qquad \frac{\uparrow \downarrow}{2s} \qquad \frac{\uparrow \downarrow}{2p} \qquad \frac{\uparrow \downarrow}{3s} \qquad \frac{\uparrow}{3p} \qquad -$$ (b) Ge (d) Si (e) none of these. #### 25. The electron configuration of Ga is given by (a) $$1s^22s^23s^23p^63d^{10}4s^24p^1$$ (b) $$1s^22s^22p^63s^23p^64s^24d^{10}4p^1$$ (c) $$1s^22s^22p^63s^23p^63d^{10}4s^24p^1$$ (d) $$1s^22s^22p^63s^23p^63d^{10}4s^24d^1$$ (e) none of these. # 26. Which one of the following elements has the ground state electron configuration [Ar]4s¹3d⁵? (a) Cr (b) Fe (c) Mn (d) V (e) none of these. ## 27. Which one of the following represents the electron configuration of an excited oxygen atom? (a) $$1s^22s^22p^2$$ (b) $$1s^22s^22p^23s^2$$ (c) $$1s^22s^22p^1$$ (d) $$1s^2 2s^2 2p^4$$ - 28. How many unpaired electrons are there in an unexcited phosphorus atom? - (a) 0 (b) 1 (c) 2 (d) 3 - (e) 4 - 29. Consider the schematic of the periodic table shown below. Which of the following statements is(are) false. - I. Elements with the outermost electron configuration ns^2 are found in the portion of the periodic table labelled R. - II. Elements with the outermost electron configuration ns^2np^1 are found in the portion of the periodic table labelled X. - III. Elements with the outermost electron configuration ns^2np^3 are found in the portion of the periodic table labelled V. - IV. Orbitals being filled for elements with the azimuthal quantum number, $\ell = 3$, are found in the portion of the periodic table labelled S. - V. Orbitals being filled for elements with the azimuthal quantum number, $\ell = 1$, are found in the portion of the periodic table labelled T. - (a) II only is false. - (b) II and V are false. - (c) None of the above statements is false. - (d) I, II and V are false. - (e) II and IV are false. - 30. The following electronic transitions occur when lithium atoms are sprayed into a flame. The various steps are numbered for identification: Which electronic transition would result in the emission of light? - (a) Steps III and V only. - (b) Steps I, II, and V. (c) Step III only. - (d) All the steps. - (e) Steps III, IV, and V.