Project Advance Chemistry 116 Sample Questions on Material in *General Chemistry*, Brown, LeMay, and Bursten # Chapter 26. Organic Chemistry Spring Semester 1995 | 1. | Which | n of the following could be a cycloalkane? | | | | | | | |---|---------------------------------|--|------------|-------------------|--|--|--|--| | | (b)
(c)
(d) | C_6H_{14} C_4H_{10} C_5H_{12} C_6H_{12} C_3H_8 | | | | | | | | 2. | Whi | | | | | | | | | | (b)
(c)
(d) | C_4H_8 C_2H_4 C_3H_6 C_4H_6 C_2H_6 | | | | | | | | 3. | All | of the following are structural isomers of C ₆ H ₁ | pt | | | | | | | | (b)
(c)
(d) | CH ₃ (CH ₂) ₂ CH(CH ₃) ₂ CH ₃ (CH ₂) ₄ CH ₃ (CH ₃) ₂ CHCH ₂ CH ₃ CH ₃ CH ₂ C(CH ₃) ₃ (CH ₃) ₂ CHCH(CH ₃) ₂ | | • | | | | | | 4. How many structural isomers are possible for hexane? | | | | | | | | | | | (a)
(b)
(c)
(d)
(e) | 4
5 | | | | | | | | 5. | How | ow many structural isomers are possible for heptane? | | | | | | | | | (a)
(b)
(c)
(d)
(e) | 3
7
5
4
9 | | | | | | | | 6. | The | The compound (CH ₃) ₂ CHCH(CH ₃)CH ₂ CH(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ is named as a derivative of | | | | | | | | | (a)
(c)
(e) | octane
hexane
decane | (b)
(d) | heptane
nonane | | | | | | 7. | The compound | (CH ₃) ₃ CCH ₂ CH(CH | $I_3)_2$ is name | d as a | derivative of | | |----|--------------|--|------------------|--------|---------------|--| |----|--------------|--|------------------|--------|---------------|--| (a) octane (b) pentane (c) butane (d) hexane - (e) heptane - 8. The compound (CH₃)₃CCH₂CH(CH₃)₂ is - (a) named as a pentane but is an isomer of octane. - (b) named as a butane but is an isomer of octane. - (c) named as a pentane but is an isomer of heptane. - (d) named as a hexane but is an isomer of octane. - (e) named as a pentane but is an isomer of hexane. - 9. For (CH₃)₂CHCH(CH₃)CH₂CH(CH₂CH₃)CH₂CH₂CH₃, the longest unbranched chain of carbon atoms is - (a) 8 - (b) 6 - (c) 7 - (d) 9 - (e) 12 - 10. The name of C(CH₃)₄ is - (a) isoproply methane - (b) 2-methylbutane - (c) isobutylmethane - (d) 2,2-dimethylpropane - (e) pentane - 11. The compound 4-ethyl-2-hexene contains - (a) 7 carbon atoms and 14 hydrogen atoms. - (b) 6 carbon atoms and 12 hydrogen atoms. - (c) 8 carbon atoms and 18 hydrogen atoms. - (d) 6 carbon atoms and 14 hydrogen atoms. - (e) 8 carbon atoms and 16 hydrogen atoms. - 12. The compound 1-chloro-1-pentene - (a) has the formula C₅H₇Cl. - (b) has the formula C₅H₁₁Cl. - (c) is an alkane. - (d) has 3 structural isomers. - (e) exists as cis and trans isomers. - 13. The product of the hydrogenation of cis-2-butene is - 2-butyne (a) (b) butane trans-2-butane (c) (d) cis-butane - (e) trans-butane - 14. The compound 2-methyl-2-pentene - has 2 structural isomers each of which can be cis or trans. - (b) exists as cis and trans isomers. - (c) has 3 structural isomers. - (d) has no structural or geometric isomers. - (e) has 5 structural isomers. - 15. The addition of HBr to 2-butene gives - (a) 2-bromo-1-butene. - (b) 1-bromobutane. - (c) 2-bromobutane. - (d) 2-bromo-2-butene. - (e) butane. - 16. Name the compound shown to the right: - (a) 2-methyl-3-nitrobenzene - (b) 1-nitro-2-methylbenzene - (c) nitrotoluene - (d) 1-methyl-2-nitrobenzene - (e) nitrobenzene - 17. Name the following compound - (a) trans-2-pentene - (b) cis-2-pentene - (c) trans-1-ethyl-1-propene - (d) trans-1-methyl-1-butene - (e) ethylmethylethene ### 18. Name the following compound - (a) cis-1,2-dichloro-2-ethylethene - (b) trans-1,2-dichloro-1-butene - (c) cis-1,2-dichloro-1-butene - (d) cis-2-ethyl-1,2-dichloroethene - (e) dichlorobutene ## 19. The product of the reaction of cis-2-butene with bromine is - (a) 2,3-dibromobutane - (b) cis-2-bromobutane - (c) trans-2-bromobutane - (d) cis-2,3-dibromobutane - (e) 2,2-dibromobutane ### 20. Cyclohexane - (a) has delocalized electrons. - (b) is planar. - (c) undergoes hydrogenation. - (d) can adopt both a "chair" and a "boat" conformation. - (e) has the formula C₆H₁₄. #### 21. Which of the following is an unsaturated hydrocarbon? - (a) cyclohexane - (b) CH₃CH(Cl)CH₃ - (c) CH₃CH(CH₃)CH₃ - (d) CH₃CHCHCH₂CH₃ - (e) $CH_3C(CH_3)_2CH_2CH(CH_3)_2$ #### 22. The hydroxyl group occurs in - (a) alcohols, phenols and carboxylic acids. - (b) aldehydes and ketones. - (c) carboxylic acids and ketones. - (d) phenois, aldehydes and ketones. - (e) alcohols and aldehydes. - 23. The carbonyl group occurs in all of the following except - (a) aldehydes - (b) amides - (c) carboxylic acids - (d) phenols - (e) ketones - 24. The ester CH₃(CH₂)₂C(O)O(CH₂)₄CH₃ is responsible for the odor of bananas. It can be prepared from - (a) CH₃(CH₂)₂CH₂OH and CH₃(CH₂)₃CH₂OH - (b) CH₃(CH₂)₂CH₂OH and CH₃(CH₂)₃COOH - (c) CH₃(CH₂)₂CHO and CH₃(CH₂)₃CH₂OH - (d) CH₃(CH₂)₂CH₂OH and CH₃(CH₂)₃CHO - (e) CH₃(CH₂)₂COOH and CH₃(CH₂)₃CH₂OH - 25. When an ester is formed via a condensation reaction with the elimination of water, the oxygen atom in the water molecule comes from - (a) the aqueous solution. - (b) the carbonyl group of the acid. - (c) the alcohol. - (d) the hydroxyl group of the acid. - (e) the aldehyde.