Project Advance Chemistry 116 Sample Questions on Material in *General Chemistry*, Brown, LeMay, and Bursten

Chapter 26. Organic Chemistry Spring Semester 1995

1.	Which	n of the following could be a cycloalkane?						
	(b) (c) (d)	C_6H_{14} C_4H_{10} C_5H_{12} C_6H_{12} C_3H_8						
2.	Whi							
	(b) (c) (d)	C_4H_8 C_2H_4 C_3H_6 C_4H_6 C_2H_6						
3.	All	of the following are structural isomers of C ₆ H ₁	pt					
	(b) (c) (d)	CH ₃ (CH ₂) ₂ CH(CH ₃) ₂ CH ₃ (CH ₂) ₄ CH ₃ (CH ₃) ₂ CHCH ₂ CH ₃ CH ₃ CH ₂ C(CH ₃) ₃ (CH ₃) ₂ CHCH(CH ₃) ₂		•				
4. How many structural isomers are possible for hexane?								
	(a) (b) (c) (d) (e)	4 5						
5.	How	ow many structural isomers are possible for heptane?						
	(a) (b) (c) (d) (e)	3 7 5 4 9						
6.	The	The compound (CH ₃) ₂ CHCH(CH ₃)CH ₂ CH(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ is named as a derivative of						
	(a) (c) (e)	octane hexane decane	(b) (d)	heptane nonane				

7.	The compound	(CH ₃) ₃ CCH ₂ CH(CH	$I_3)_2$ is name	d as a	derivative of	
----	--------------	--	------------------	--------	---------------	--

(a) octane

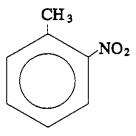
(b) pentane

(c) butane

(d) hexane

- (e) heptane
- 8. The compound (CH₃)₃CCH₂CH(CH₃)₂ is
 - (a) named as a pentane but is an isomer of octane.
 - (b) named as a butane but is an isomer of octane.
 - (c) named as a pentane but is an isomer of heptane.
 - (d) named as a hexane but is an isomer of octane.
 - (e) named as a pentane but is an isomer of hexane.
- 9. For (CH₃)₂CHCH(CH₃)CH₂CH(CH₂CH₃)CH₂CH₂CH₃, the longest unbranched chain of carbon atoms is
 - (a) 8
 - (b) 6
 - (c) 7
 - (d) 9
 - (e) 12
- 10. The name of C(CH₃)₄ is
 - (a) isoproply methane
 - (b) 2-methylbutane
 - (c) isobutylmethane
 - (d) 2,2-dimethylpropane
 - (e) pentane
- 11. The compound 4-ethyl-2-hexene contains
 - (a) 7 carbon atoms and 14 hydrogen atoms.
 - (b) 6 carbon atoms and 12 hydrogen atoms.
 - (c) 8 carbon atoms and 18 hydrogen atoms.
 - (d) 6 carbon atoms and 14 hydrogen atoms.
 - (e) 8 carbon atoms and 16 hydrogen atoms.
- 12. The compound 1-chloro-1-pentene
 - (a) has the formula C₅H₇Cl.
 - (b) has the formula C₅H₁₁Cl.
 - (c) is an alkane.
 - (d) has 3 structural isomers.
 - (e) exists as cis and trans isomers.

- 13. The product of the hydrogenation of cis-2-butene is
 - 2-butyne (a)


(b) butane

trans-2-butane (c)

(d) cis-butane

- (e) trans-butane
- 14. The compound 2-methyl-2-pentene
 - has 2 structural isomers each of which can be cis or trans.
 - (b) exists as cis and trans isomers.
 - (c) has 3 structural isomers.
 - (d) has no structural or geometric isomers.
 - (e) has 5 structural isomers.
- 15. The addition of HBr to 2-butene gives
 - (a) 2-bromo-1-butene.
 - (b) 1-bromobutane.
 - (c) 2-bromobutane.
 - (d) 2-bromo-2-butene.
 - (e) butane.
- 16. Name the compound shown to the right:
 - (a) 2-methyl-3-nitrobenzene
 - (b) 1-nitro-2-methylbenzene
 - (c) nitrotoluene
 - (d) 1-methyl-2-nitrobenzene
 - (e) nitrobenzene
- 17. Name the following compound

- (a) trans-2-pentene
- (b) cis-2-pentene
- (c) trans-1-ethyl-1-propene
- (d) trans-1-methyl-1-butene
- (e) ethylmethylethene

18. Name the following compound

- (a) cis-1,2-dichloro-2-ethylethene
- (b) trans-1,2-dichloro-1-butene
- (c) cis-1,2-dichloro-1-butene
- (d) cis-2-ethyl-1,2-dichloroethene
- (e) dichlorobutene

19. The product of the reaction of cis-2-butene with bromine is

- (a) 2,3-dibromobutane
- (b) cis-2-bromobutane
- (c) trans-2-bromobutane
- (d) cis-2,3-dibromobutane
- (e) 2,2-dibromobutane

20. Cyclohexane

- (a) has delocalized electrons.
- (b) is planar.
- (c) undergoes hydrogenation.
- (d) can adopt both a "chair" and a "boat" conformation.
- (e) has the formula C₆H₁₄.

21. Which of the following is an unsaturated hydrocarbon?

- (a) cyclohexane
- (b) CH₃CH(Cl)CH₃
- (c) CH₃CH(CH₃)CH₃
- (d) CH₃CHCHCH₂CH₃
- (e) $CH_3C(CH_3)_2CH_2CH(CH_3)_2$

22. The hydroxyl group occurs in

- (a) alcohols, phenols and carboxylic acids.
- (b) aldehydes and ketones.
- (c) carboxylic acids and ketones.
- (d) phenois, aldehydes and ketones.
- (e) alcohols and aldehydes.

- 23. The carbonyl group occurs in all of the following except
 - (a) aldehydes
 - (b) amides
 - (c) carboxylic acids
 - (d) phenols
 - (e) ketones
- 24. The ester CH₃(CH₂)₂C(O)O(CH₂)₄CH₃ is responsible for the odor of bananas. It can be prepared from
 - (a) CH₃(CH₂)₂CH₂OH and CH₃(CH₂)₃CH₂OH
 - (b) CH₃(CH₂)₂CH₂OH and CH₃(CH₂)₃COOH
 - (c) CH₃(CH₂)₂CHO and CH₃(CH₂)₃CH₂OH
 - (d) CH₃(CH₂)₂CH₂OH and CH₃(CH₂)₃CHO
 - (e) CH₃(CH₂)₂COOH and CH₃(CH₂)₃CH₂OH
- 25. When an ester is formed via a condensation reaction with the elimination of water, the oxygen atom in the water molecule comes from
 - (a) the aqueous solution.
 - (b) the carbonyl group of the acid.
 - (c) the alcohol.
 - (d) the hydroxyl group of the acid.
 - (e) the aldehyde.