
PROPERTIES OF THE ALKANES

Name	Formula	<u>MP, °C</u>	<u>BP, °C</u>
Methane	CH_4	-183	-162
Ethane	C_2H_6	-172	-89
Propane	C_3H_8	-187	-42
n-Butane	C_4H_{10}	-138	0
n-Pentane	C_5H_{12}	-130	36
n-Hexane	$C_{6}H_{14}$	-95	69
n-Heptane	C_7H_{16}	-91	98
n-Octane	C_8H_{18}	-57	126
n-Nonane	$C_{9}H_{20}$	-54	151
n-Decane	$C_{10}H_{22}$	-30	174
n-Undecane	$C_{11}H_{24}$	-26	196
n-Dodecane	$C_{12}H_{26}$	-10	216
n-Tridecane	$C_{13}H_{28}$	-6	234
n-Tetradecane	$C_{14}H_{30}$	6	252
n-Pentadecane	$C_{15}H_{32}$	10	266
n-Hexadecane	$C_{16}H_{34}$	18	280
n-Heptadecane	$C_{17}H_{36}$	22	292
n-Octadecane	$C_{18}H_{38}$	28	308
n-Nonadecane	$C_{19}H_{40}$	32	320
n-Eicosane	$C_{20}H_{42}$	36	dec.

PETROLEUM CONSTITUENTS

Fraction_	Distillation <u>Temperature, °C</u>	Carbon <u>Number</u>
Gas	Below 20°	C ₁ - C ₄
Petroleum ether	20° - 60°	C ₅ - C ₆
Ligroin (light naptha)	60° - 100°	C ₇ - C ₇
Natural gasoline	40° - 205°	C_5 - C_{10} , cycloalkanes
Kerosene	175° - 325°	C_{12} - C_{18} , aromatics
Gas oil	Above 275°	C ₁₂ and higher
Lubricating oil	Non-volatile liquids	Long chains/cyclic
Asphalt	Non-volatile	Polycyclic
Coke	Solid Carbon	

HYDROCARBON AND FUNCTIONAL GROUP SUMMARY SHEET

Name	General Formula	Nomenclature	Examples	Ι	Properties
Alkanes	C_nH_{2n+2}	-ane	methane	Saturated	(all single bonds)
Alkenes	C_nH_{2n}	-ene	ethene	Double Bond, C=C unsaturated	
Alkyne	C_nH_{2n-2}	-yne	ethyne	Triple Bond	l, -C/C- unsaturated
Benzene Serie	es C _n H _{2n-6}		Benzene C_6H_6		$\langle \bigcirc \rangle$
Name	General Formula		Nomenc	lature	Examples
Alcohols	R-OH		-ol		ethanol
Aldehydes	R-CHO	O R−C−	-al -H		methanal
Ketones	R ₁ -CO-R ₂	$\begin{array}{c} \mathbf{O} \\ \mathbf{R}_{1} \\ - \mathbf{C} \\ - \end{array}$	-R ₂ -one		propanone
Acids	R-COOH	O ⊪ R—C−O−	-oic acid	1	ethanoic acid
Esters	R ₁ -COO-R ₂	$\mathbf{R}_{1}^{\parallel}\mathbf{C}$ -O-	-R ₂ -yl -oate	;	ethyl ethanoate
Ethers	R ₁ -O-R ₂		-yl -yl e	ther	diethyl ether
Amines	R-NH ₂		-yl amin	le	triethyl amine
Polymers	$[-CH_2-CH_2-]_n$		poly-		polyethylene
ORGANIC PREFIXES 1 carbon = meth 2 carbons = eth 3 carbons = prop 4 carbons = but 5 carbons = bet 6 carbons = hex 7 carbons = hept 8 carbons = oct 9 carbons = non 10 carbons = dec		<u>Halogens</u> Fluoro = F- Chloro = Cl- Bromo = Br- Iodo = I-		<u>Prefixes</u> di = two tri = three tetra = four penta = five hexa = six hepta = seven octa = eight etc.	

ORGANIC REACTIONS

1. Substitution - Only saturated compounds undergo substitution (alkanes only)

 $\begin{array}{ccccccc} H & H \\ H - C - H & + & Br - Br & \longrightarrow & H - C - Br & + & H - Br \\ \vdots & \vdots & & \vdots \end{array}$ Example,

2. Addition - Only unsaturated compounds undergo addition (alkenes and alkynes only) $\begin{array}{cccc} H & H & H & H & H \\ I & I & I & H \\ H - C = C - H & + & Br - Br & \longrightarrow & H - C - C - H \\ Br & Br & Br \end{array}$ Example,

Hydrogenation: Alkene + hydrogen = Alkane ($C_2H_4 + H_2 = C_2H_6$)

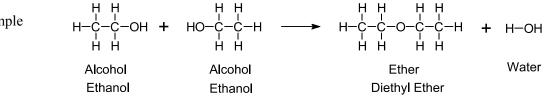
3. Esterification - The reaction between an acid and alcohol to produce an ester and water

 $\begin{array}{ccccccccc} H & 0 & H & H & H & H \\ H - C - C - OH & + & HO - C - C - H & - \rightarrow & H - C - C - O - C - C - H & + \\ H & H & H & H & H & H \end{array}$ Example `0—н Ethanoic Acid Ethanol Ethyl Ethanoate Water (An Acid) (An Alcohol) (An Ester)

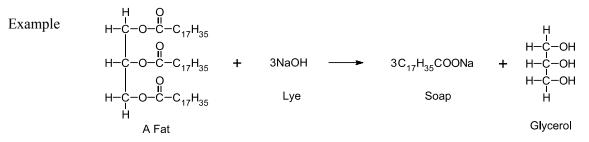
Fermentation - Fermentation of an alcohol gives alcohol and carbon dioxide 4.

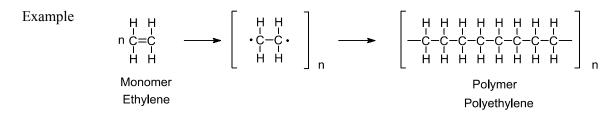
> veast + 2C₂H₅OH(aq) $C_{6}H_{12}O_{6}(aq)$ $2CO_2(g)$ carbon dioxide alcohol sugar

 $\begin{array}{cccccccc} H & H & & H & O \\ H - C - C - OH & + & O_2 & \longrightarrow & H - C - C - H & + \\ \vdots & \vdots & \vdots & & & & \\ \end{array}$ Example H-O-H Oxidizing Alcohol Aldehvde Water Agent

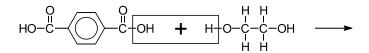

6. Combustion - Complete combustion always gives carbon dioxide and water

Example
$$2C_8H_{18}(R) + 25O_2(g) + 18H_2O(g) + 18H_2O(g)$$


7. Dehydration of alcohols yield an ether and water


Example

8. Saponification - Hydrolysis of a fat with a base yields soap and glycerol

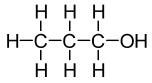


9. Addition polymerization - Alkene monomers are added together to form a polymer

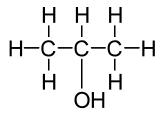
10. Condensation polymerization - Similar to esterification

Example

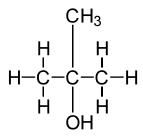
Terephthalic Acid

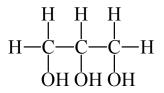

Ethylene Glycol

Ĩ ∙C−0-¢−о— **+** н₂о

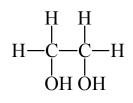

Polyethylene Terephthalate Polyester

Special Alcohols


1. A primary alcohol, 1-propanol (-OH group on the terminal carbon)


2. A secondary alcohol, 2-propanol (-OH group on a middle carbon)

3. A tertiary alcohol, 2-methyl-2-propanol (-OH group on a carbon surrounded by three other carbons)



4. Glycerol, a trihydroxy alcohol, also called 1,2,3 - propantriol, $C_3H_5(OH)_3$

5. Ethylene glycol, a dihydroxy $C_2H_4(OH)_2$

alcohol, also called 1,2-ethandiol,

