N						3876 - 1 -
Nam 1)		tements describes what occurs in	n the followi	ng redox reaction?		
	$Cu(s) + 2Ag^{+}(aq) \pm 1^{-}$	$2u^{2+}(a\alpha) + 2\Delta \alpha(s)$				
	A) Only charge is conser	(D	C)	Both mass and charge are	e conse	rved
	B) Neither mass nor char		D)	Only mass is conserved.	Consc	
2)	A redox reaction is a reacti	on in which				
	A) reduction occurs first	and then oxidation occurs	C)	only oxidation occurs		
	B) reduction and oxidation	on occur at the same time	D)	only reduction occurs		
3)	In the reaction $Zn + Cu^{2+}$:	\ddagger $2n^{2+} + Cu$, the Cu^{2+} ions				
	A) gain protons	B) lose protons	C)	gain electrons	D)	lose electrons
4)	In the reaction $Mg + Cl_2 \ddagger$	\$^ MgCl ₂ , the correct half-reaction	n for the oxi	dation that occurs is		
	A) Cl ₂ ‡‡^ 2Cl- + 2e-		C)	$Mg \ddagger ^Mg^{2+} + 2e^{-}$		
	B) Cl ₂ + 2e ⁻ ‡‡^ 2Cl ⁻		D)	$Mg + 2e^- \ddagger Mg^{2+}$		
5)	All redox reactions involve	;				
	A) both the gain and the	loss of electrons	C)	the loss of electrons, only	y	
	B) neither the loss nor th	e gain of electrons	D)	the gain of electrons, onl	y	
6)	As the elements in Period 3 successive element to act a	3 of the Periodic Table are considers a reducing agent	ered in orde	r of increasing atomic num	ber, the	ability of each
	A) remains the same	B) increases		C) de	creases	
7)	A) The oxidation half-readB) The oxidation half-readC) The oxidation half-read	tements correctly describes a rec ction occurs before the reduction ction and the reduction half-reaction ction occurs spontaneously but ction occurs after the reduction h	half-reaction tion occur si the reduction	n. multaneously. n half-reaction does not.		
8)	Given the redox reaction:					
	Ni + Sn ⁴⁺ ‡‡^ Ni ²⁺ + S	_n 2+				
	Which species is oxidized?					
	A) Sn ²⁺	B) Ni ²⁺	C)	Sn^{4+}	D)	Ni
9)	Given the oxidation-reduct	ion reaction:				
	Hg ²⁺ + 2I ⁻ ‡‡^ Hg(l) +	I ₂ (s)				
	Which situation correctly	represents the half-reaction for th	ne reduction	that occurs?		
	A) $2I^- + 2e^- \ddagger 1_2(s)$		C)	$Hg^{2+} \pm ^Hg(I) + 2e^{-}$		
	B) $Hg^{2+} + 2e^{-} \pm ^Hg(I)$		D)	$2I^- \ddagger 1_2(s) + 2e^-$		
10)	When Fe ³⁺ is reduced to F	Fe^{2+} , the Fe^{3+} ion				
,	A) loses 1 proton	B) gains 1 proton	C)	loses 1 electron	D)	gains 1 electron
11)	In the reaction $2Fe^{3+} + S^{2-}$	\pm \pm 2Fe ²⁺ + S ⁰ , the species oxid	ized is			
	A) S ⁰	B) Fe ³⁺		S ² -	D)	Fe ²⁺

C) oxidation, only

D) reduction, only

The reaction $CuO + CO \ddagger CO_2 + Cu$ is an example of

A) both oxidation and reduction

B) neither oxidation nor reduction

12)

13)	Which change occurs when a	an Sn ²⁺	ion is oxidized?		_			
	A) Two electrons are lost.B) Two protons are gained.				Two protons are lost. Two electrons are gained.			
14)	Which half-reaction correctly		ents reduction?	D)	i wo elections are gamea.			
11)	A) $Ca^{2+} + 2e^{-} \pm^{^{*}} Ca$	•		C)	2F- ‡ * F ₂ + 2e-	D)	2F-+2e- ‡ ‡^F ₂	
15)	In the reaction $Zn + Cu^{2+} \ddagger \ddagger$	^ Zn ²⁺ +	Cu, the oxidizing agent					
	A) loses electrons		gains protons	C)	is reduced	D)	is oxidized	
16)	Given the reaction:							
	$MnO_2(s) + 4H^+(aq) + 2Fe$	e ²⁺ (aq):	$^+$ Mn ²⁺ (aq) + 2Fe ³⁺ (aq)) + 2H ₂ O(1)			
	Which species is oxidized?							
	A) H ₂ O(I)	B)	MnO ₂ (s)	C)	$Fe^{2+}(aq)$	D)	H ⁺ (aq)	
17)	Given the equation for the dis	scharge	of a lead-acid battery:					
	Pb + PbO ₂ + 2H ₂ SO ₄ ‡‡ ^	2PbSO ₂	4+2H ₂ O					
	Which substance is oxidized	?						
	A) PbO ₂	B)	PbSO ₄	C)	Pb	D)	H_2SO_4	
18)	In the reaction $2H_2(g) + O_2(g)$;) ‡‡^ 2H	(2O(g), the oxidizing agent	t is				
	A) O ² -	B)	H ⁺	C)	O ₂	D)	Н2	
19)	In the reaction 2K + Cl ₂ ‡‡^ 2KCl, the species oxidized is							
	A) Cl-	B)	K ⁺	C)	Cl ₂	D)	K	
20)	In the reaction $Zn(s) + Cu^{2+}(aq) \ddagger Zn^{2+}(aq) + Cu(s)$, the reducing agent is							
	A) $Zn^{2+}(aq)$	B)	Cu(s)	C)	Zn(s)	D)	Cu ²⁺ (aq)	
21)	Given the reaction:							
	$Mg + Cu^{2+} \ddagger Mg^{2+} + Cu^{2+}$	Cu						
	Which half-reaction represen	ts the o	xidation that occurs?					
	A) $Cu^{2+} + 2e^{-} \pm 1^{\circ} Cu$			C)	$Mg^{2+} + 2e^{-} \pm Mg$			
	B) $Mg \ddagger Mg^{2+} + 2e^{-}$			D)	$Cu \ddagger ^Cu^{2+} + 2e^{-}$			
22)	Which of the following is a re-		ction?					
	A) $2KBr + F_2 \pm ^2 2KF + Br_2$				2 NaCl + H_2 SO ₄ \ddagger $^{^{\circ}}$ Na ₂ SO ₄			
	B) $Ca(OH)_2 + Pb(NO_3)_2 \ddagger \ddagger$				$2HCl + Mg(OH)_2 \ddagger 2HOH$	[+ Mg	gCl ₂	
23)	When 1 mole of Sn ⁴⁺ ions is							
	A) gained by Sn ⁴⁺	B)	gained by Sn ²⁺	C)	lost by Sn ²⁺	D)	lost by Sn ⁴⁺	
24)	In the reaction $Zn + Fe^{2+} \ddagger \uparrow$	$2n^{2+}$	Fe, the reducing agent is					
	A) Fe ²⁺	B)	Fe	C)	Zn	D)	Zn^{2+}	
25)	For a redox to occur, there mu							
	A) ions	· ·	electrons	The state of the s	protons	D)	neutrons	
26)	What is the oxidizing agent in			2+ + 2Ag	0?			
	A) Zn^{2+}	B)	Ag^0	C)	Ag^+	D)	Zn^0	

27) Given the redox reaction:

$$Co(s) + PbCl_2(aq) \ddagger CoCl_2(aq) + Pb(s)$$

Which of the following statements correctly describes the oxidation and reduction that occur?

A) Co(s) is reduced and $Pb^{2+}(aq)$ is oxidized.

C) Co(s) is oxidized and Pb $^{2+}$ (aq) is reduced.

B) Co(s) is oxidized and Cl⁻(aq) is reduced.

D) Co(s) is reduced and Cl⁻(aq) is oxidized.

28) Which species undergoes a loss of electrons?

$$Mg(s) + 2Ag^{+}(aq) \pm 1^{2}Mg^{2+}(aq) + 2Ag(s)$$

A) Mg(s)

B) Ag(s)

C) $Ag^+(aq)$

D) $Mg^{2+}(aq)$

29) Which half-reaction correctly represents reduction?

A) $H_2(g) + 2e^- \ddagger 2H^+(aq)$

C) $Cu^{2+}(aq) + 2e^{-} \pm cu(s)$

B) $I_2(s) \ddagger 2I^-(aq) + 2e^-$

D) $Al(s) \pm Al^{3+}(aq) + 3e^{-}$

30) Which half-cell reaction correctly represents oxidation?

- A) $Pb + 2e^{-} \pm 1^{\circ} Pb^{2+}$
- B) $Pb^{2+} + 2e^{-} \pm \pm^{\circ} Pb$
- C) $Pb^{2+} \pm \pm^{Pb} + 2e^{-}$
- D) Pb $\pm \pm$ ^ Pb²⁺ + 2e⁻

31) Given the reaction:

$$Mg(s) + Cl_2(g) \ddagger MgCl_2(s)$$

Which half-reaction correctly represents the reduction that occurs?

A) $Mg^{2+} \ddagger Mg(s) + 2e^{-}$

C) $Cl_2(g) + 2e^- \ddagger ^2Cl^-$

B) $2Cl^- \ddagger Cl_2(g) + 2e^-$

D) $Mg(s) + 2e^{-} \pm Mg^{2+}$

32) Which of the following is an oxidation-reduction reaction?

A) $KI \pm 1^{+}K^{+} + I^{-}$

C) $4Na + O_2 \pm 1^2 2Na_2O$

B) AgNO₃ + NaCl ‡‡ AgCl + NaNO₃

D) 3O₂ # 2O₃

33) Given the reaction:

$$2KCl(l) \ddagger 2K(s) + Cl_2(g)$$

In this reaction, the K⁺ ions are

A) oxidized by gaining electrons

C) reduced by gaining electrons

B) oxidized by losing electrons

- D) reduced by losing electrons
- 34) In the reaction 4NH₃ + 5O₂ ‡‡ 4NO + 6H₂O, the oxidation number of nitrogen changes from
 - A) -2 to -3

B) -3 to +2

C) -2 to +3

D) -3 to -2

35) Given the reaction:

$$Zn + 2Ag^{+} \pm 1^{2} Zn^{2+} + 2Ag$$

What is the total number of moles of Ag⁺ that can be reduced to Ag by 1 mole of Zn?

A) 1

B) 2

C) 0.5

D) 4

36) Given the reaction:

$$Sn^{4+} + 2e^{-} \pm 1^{\circ} Sn^{2+}$$

This reaction can be classified as

- A) an oxidation reaction, because there is an increase in oxidation number
- B) a reduction reaction, because there is a decrease in oxidation number
- C) a reduction reaction, because there is an increase in oxidation number
- D) an oxidation reaction, because there is a decrease in oxidation number
- 37) Which equation represents a redox reaction?
 - A) $H_2CO_3 \pm 1^3H_2O + CO_2$

C) NaCl + AgNO₃ ‡‡ NaNO₃ + AgCl

B) HCl + KOH **‡‡**^ KCl + H₂O

- D) $2KClO_3 \ddagger 2KCl + 3O_2$
- 38) In the reaction $3Cu^0 + 2NO_3^- + 8H^+ \ddagger \hat{3}Cu^{2+} + 2NO + 4H_2O$, the substance oxidized is
 - A) O^{2} -

B) H⁺

C) N²⁺

D) Cu^0

- 39) Which half-reaction correctly represents a reduction reaction?
 - A) $Li^0 + e^- \pm ^*Li^+$
- B) $Sn^0 + 2e^- \pm \pm^* Sn^{2+}$
- C) $Br_2^0 + 2e^- \ddagger 2Br^-$
- D) $Na^0 + e^- \pm ^Na^+$

- 40) Which species is produced when a hydrogen atom is oxidized?
 - A) H•

B) H:H

C) H⁺

D) H:

- 41) Which oxidation number change could occur during an oxidation half-reaction?
 - A) -2 to -3

B) +1 to -1

C) +2 to +3

D) +3 to +1

- 42) Which of the following is a redox reaction?
 - A) $Mg(OH)_2 + 2HCl \ddagger MgCl_2 + 2H_2O$

C) $Mg + 2HCl \ddagger MgCl_2 + H_2$

B) $MgCl_2 + 6H_2O \ddagger MgCl_2 d 6H_2O$

D) $Mg^{2+}(aq) + 2OH^{-}(aq) \pm Mg(OH)_2$

- 43) Given the equations A, B, C, and D:
 - (A) $AgNO_3 + NaCl \pm ^AgCl + NaNO_3$
 - (B) Cl₂ + H₂O $\ddagger \ddagger$ HClO + HCl
 - (C) CuO + CO $\pm \pm$ ^ CO₂ + Cu
 - (D) NaOH + HCl $\pm \pm$ ^ NaCl + H₂O

Which two equations represent redox reactions?

A) D and B

B) A and B

C) B and C

D) C and A

- 44) Which half-reaction correctly represents reduction?
 - A) $Cr(s) + 3e^{-} \pm \pm^{\circ} Cr^{3+}$

C) $Cr^{3+} \pm Cr(s) + 3e^{-}$

B) $Cr^{3+} + 3e^{-} \pm r^{*} Cr(s)$

- D) $Cr(s) \pm r^2 Cr^{3+} + 3e^{-}$
- 45) In the reaction $Cu + 2Ag^+ \ddagger Cu^{2+} + 2Ag$, the oxidizing agent is
 - A) Cu

B) Ag⁺

C) Ag

D) Cu²⁺

- 46) What is the oxidizing agent in the reaction $2Fe^{2+} + Cl_2 \ddagger 2Fe^{3+} + 2Cl^{-}$?
 - A) Cl-

B) Fe²⁺

C) Fe^{3+}

D) Cl₂

47) Given the reaction:

$$\operatorname{Sn}^{2+}(aq) + 2\operatorname{Fe}^{3+}(aq) \% \check{\mathsf{S}} \cdot \operatorname{Sn}^{4+}(aq) + 2\operatorname{Fe}^{2+}(aq)$$

The total number of moles of electrons lost by 1 mole of Sn^{2+} is

A) 1

B) 2

C) 3

D) 4

48)	In the reaction Ni + CuSO ₄ ‡‡^	Cu + NiSO ₄ , each nickel atom							
	A) gains one electron, only		C)	loses two electrons					
40)	B) gains two electrons	N () 110 Y + 0	D)	loses one electron, only					
49)	What occurs in the half-reaction	$n Na(s) \ddagger Na^+ + e^-?$	<i>C</i>)	N () :					
	A) Na⁺ is oxidized.B) Na(s) gains electrons.		C) D)	Na(s) is oxidized. Na(s) is reduced.					
50)	Given the reaction:		,	(-)					
	$Zn(s) + 2H^{+}(aq) + 2Cl^{-}(aq)$:	\ddagger $2n^{2+}(aq) + 2Cl^{-}(aq) + H_{2}(g)$							
	Which species is oxidized?								
	A) $H^+(aq)$	B) H ₂ (g)	C)	Zn(s)	D)	Cl ⁻ (aq)			
51)	Which half-reaction correctly re	epresents reduction?							
	A) $2I^- \ddagger 12^0 + 2e^-$	B) $Cr^{3+} + 3e^{-} \pm \hat{C}r^{0}$	C)	$Cu^0 \ddagger Cu^{2+} + 2e^{-}$	D)	$Zn^0 + 2e^- \ddagger ^2Zn^{2+}$			
52)	Given the reaction:								
	$Ca(s) + Cu^{2+}(aq) \ddagger ^Ca^{2+}(aq)$	(aq) + Cu(s)							
	Which represents the correct h	Which represents the correct half-reaction for the reduction that occurs?							
	A) $Cu(s) \ddagger Cu^{2+}(aq) + 2e^{-}$		C)	$Cu(s) + 2e^{-} \pm 1^{\circ} Cu^{2+}(aq)$					
	B) $Cu^{2+}(aq) + 2e^{-} \pm ^Cu(s)$		D)	$Cu^{2+}(aq) \ddagger Cu(s) + 2e^{-}$					
53)	•	emistry reference table, which elem							
	A) Fe	B) Cr		Sr		Cu			
54)	Which half-reaction correctly re	epresents the oxidation which occ	urs in t	the reaction $Cl_2 + 2Br^-(aq) \ddagger \ddagger$	^2Cl	$r(aq) + Br_2?$			
	A) $Cl_2 \ddagger ^2Cl^- + 2e^-$	B) $2Br^- \ddagger Br_2 + 2e^-$	C)	$Cl_2 + 2e^- \ddagger ^2 2Cl^-$	D)	2Br ⁻ + 2e ⁻ ‡‡ [^] Br ₂			
55)	In the reaction $2Na + 2H_2O \ddagger \uparrow$	$2Na^+ + 2OH^- + H_2$, the substance	oxidiz	ed is					
	A) Na ⁺	B) H ₂	C)	Na	D)	H^+			
56)	An oxide ion is oxidized to an o	xygen atom by							
	A) gaining protons	B) gaining electrons		losing electrons	D)	losing protons			
57)	In the chemical cell reaction, 2A	$A1 + 3Ni^{2+} \pm 1^2 2A1^{3+} + 3Ni$, which	specie	s is reduced?					
	A) Ni ²⁺	B) Al	C)	Ni	D)	A1 ³⁺			
58)	Which equation represents an								
	A) $H_2O + H_2O \ddagger \uparrow H_3O^+ + OI$			$Zn(OH)_2 + 2HCl \ddagger ZnCl_2$	+ 2H ₂	QO			
	B) $H_2O + NH_3 \ddagger ^NH_4 + OH_4$		D)	$Zn + 2HCl \ddagger 2nCl_2 + H_2$					
59)	A redox reaction always involv	es	<i>a</i>						
	A) the formation of ionsB) the transfer of protons		C) D)	a change in oxidation numb a change of phase	er				
60)	In the reaction $2ZnS + 3O_2 \ddagger \uparrow$	2ZnO + 2SO ₂ , the oxidation numb	er of s	ulfur changes from					
	A) 0 to -2	B) +2 to +4	C)	-2 to +4	D)	-2 to +6			
61)	In the reaction $3Zn^0 + 2Fe^{3+} \ddagger$	$^{\circ}$	nt is						
	A) Fe ⁰	B) Zn ²⁺	C)	Fe ³⁺	D)	Zn^0			
62)	In the reaction $2KMnO_4 + 5SO_2$	2 + 2H ₂ O ‡ ‡^ K ₂ SO ₄ + 2MnSO ₄ +	2H ₂ S0	O ₄ , the oxidation number of m	anga	nese changes from			
	A) +5 to +2	B) +4 to +3	C)	+7 to +2	D)	+6 to +3			

63)	The reaction BaCO ₃ ##^ BaO + CO ₂ involves						
	A) reduction, onlyB) oxidation, only	C) D)	neither oxidation nor redu both oxidation and reduct				
64)	In the reaction $2Al + 3Ni(NO_3)_2 \ddagger 2Al(NO_3)_3 + 3Ni$, the aluminum is						
	A) oxidized and its oxidation number decreasesB) reduced and its oxidation number decreases	C) D)	reduced and its oxidation number increases oxidized and its oxidation number increases				
65)	Given the reaction:						
	3Cu + 8HNO ₃ ‡‡ ^ 3Cu(NO ₃) ₂ + 2NO + 4H ₂ O						
	The reducing agent is						
	A) N ⁺⁵ B) Cu ⁰	C)	N+2	D) Cu ⁺²			
66)	Given the reaction:						
	$Zn(s) + 2HCl(aq) \ddagger 2nCl_2(aq) + H_2(g)$						
	Which equation represents the correct oxidation half-reaction?						
	A) $2Cl^{-} \ddagger ^{*} Cl_{2}(g) + 2e^{-}$	C)	$2H^+ + 2e^- \ddagger ^H_2(g)$				
	B) $Zn^{2+} + 2e \ddagger 2n(s)$	D)	$Zn(s) \ddagger 2n^{2+} + 2e^{-}$				
67)	Which of the following is true when an Sn ²⁺ ion is reduced?						
	A) It acts as a reducing agent.B) Its mass decreases.	C) D)	Its oxidation number incre It gains electrons.	eases.			
68)	In the reaction $4Zn + 10HNO_3 \ddagger ^4Zn(NO_3)_2 + NH_4NO_3 + 3H_2O$, the zinc is						
	 A) oxidized and the oxidation number changes from +2 to 0 B) reduced and the oxidation number changes from 0 to +2 C) oxidized and the oxidation number changes from 0 to +2 D) reduced and the oxidation number changes from +2 to 0 						
69)	In the reaction Pb + $2Ag^+$ ‡‡ Pb^{2+} + $2Ag$, the Ag^+ is						
	 A) reduced, and the oxidation number changes from +2 to 0 B) oxidized, and the oxidation number changes from +1 to 0 C) reduced, and the oxidation number changes from +1 to 0 D) oxidized, and the oxidation number changes from 0 to +1 						
70)	Which half-reaction shows both the conservation of mass and t	the cons	ervation of charge?				
	A) Br ‡‡ Br ₂ + 2e B) 2Br + 2e ‡‡ Br ₂	C)	Cl ₂ ‡‡^ Cl- + 2e-	D) $Cl_2 + 2e^- \ddagger ^2Cl^-$			
71)	Which half-reaction correctly represents reduction?						
	A) $Mn^{7+} \ddagger ^Mn^{4+} + 3e^-$ B) $S^2 = \ddagger ^S^0 + 2e^-$	- /	Mn ⁷⁺ + 3e ⁻ ‡‡^ Mn ⁴⁺ S ²⁻ + 2e ⁻ ‡‡^ S ⁰				
72)	In the reaction, $MnO_2 + 4HCl \ddagger MnCl_2 + 2H_2O + Cl_2$, the oxide	ation nu	mber of the manganese				
	A) remains the same B) decreases		C) inc	reases			
73)	Which equation represents a redox reaction?						
	A) $NH_3 + H^+ + Cl^- \ddagger NH_4^+ + Cl^-$	C)	$Cu + 2Ag^{+} + 2NO_{3}^{-} \pm 2$	$Ag + Cu^{2+} + 2NO_3$			
	B) $2Na^+ + S^2- \ddagger Na_2S$	D)	$H^+ + C_2H_3O_2^- \ddagger ^+ HC_2H_3$	₃ O ₂			
74)	Which half-reaction correctly represents reduction?						
	A) $Sn^{2+} \ddagger Sn^0 + 2e^-$	C)	$Sn^{2+} + 2e^{-} \ddagger ^{s} Sn^{0}$				
	B) $\operatorname{Sn}^{2+} \ddagger \operatorname{Sn}^{4+} + 2e^{-}$	D)	$\text{Sn}^{2+} + 2e^- \ddagger \text{Sn}^{4+}$				

75) Given the reaction:

$$\operatorname{Sn}^{2+}(aq) + 2\operatorname{Fe}^{3+}(aq) \pm \operatorname{Sn}^{4+}(aq) + 2\operatorname{Fe}^{2+}(aq)$$

The oxidizing agent in this reaction is

A)
$$Fe^{3+}$$

D)
$$Sn^{4+}$$

76) When a substance is oxidized, it

- A) acts as an oxidizing agent
- B) loses protons
- Which half-reaction correctly represents reduction?

A)
$$Sn^{2+} \pm 1^{\circ} Sn^{4+} + 2e^{-}$$

B)
$$Sn + 2e^{-} \pm 1^{\circ} Sn^{2+}$$

C)
$$Sn^{4+} + 2e^{-} \pm r^{*} Sn^{2+}$$

C) acts as a reducing agent

D) Sn
$$\pm 1^{\circ}$$
 Sn²⁺ + 2e⁻

D) gains protons

78) In the redox reaction

$$Fe(s) + CuSO_4(aq) \ddagger FeSO_4(aq) + Cu(s),$$

there is conservation of

- A) mass, only
- B) both mass and charge

- C) neither mass nor charge
- D) charge, only

79) Given the reaction:

$$Zn + 2HCl \ddagger 2nCl_2 + H_2$$

Which of the following statements best describes what happens to the zinc?

- A) The oxidation number changes from +2 to 0, and the zinc is reduced.
- B) The oxidation number changes from +2 to 0, and the zinc is oxidized.
- C) The oxidation number changes from 0 to +2, and the zinc is oxidized.
- D) The oxidation number changes from 0 to +2, and the zinc is reduced.
- 80) Given the redox reaction:

$$2I^{-}(aq) + Br_{2}(I) \ddagger 2Br^{-}(aq) + I_{2}(s)$$

What occurs during this reaction?

- A) The I⁻ ion is reduced, and its oxidation number decreases.
- B) The I- ion is reduced, and its oxidation number increases.
- C) The I- ion is oxidized, and its oxidation number decreases.
- D) The I- ion is oxidized, and its oxidation number increases.
- 81) What is the reducing agent in the reaction Pb + $2AgNO_3 \ddagger Pb(NO_3)_2 + 2Ag$?
 - A) Pb

B) Ag

C) NO₃-

D) Ag^+

- 82) In the reaction $2Al(s) + 3Cu^{2+}(aq) \pm^2 2Al^{3+}(aq) + 3Cu(s)$, the Al(s)
 - A) gains electrons
- B) loses protons
- C) loses electrons
- D) gains protons

- 83) In the reaction $4HCl + MnO_2 \pm 1^{\circ} MnCl_2 + 2H_2O + Cl_2$, the manganese is
 - A) oxidized and the oxidation number changes from +4 to +2
 - B) oxidized and the oxidation number changes from +2 to +4
 - C) reduced and the oxidation number changes from +4 to +2
 - D) reduced and the oxidation number changes from +2 to +4

84)	In any oxidation-reduction reaction, the total number of electrons gained is						
	A) unrelated to the total numB) less than the total number			greater than the total numb equal to the total number o			
85)	Given the reaction:						
	$3Ag + Au^{3+} \ddagger 3Ag^{+} + A$	u					
	Which equation correctly repre	esents the oxidation half-react	tion?				
	A) Au^{3+} ##^ $Au + 3e^{-}$		C)	$3Ag \ddagger ^3Ag^+ + 3e^-$			
	B) $3Ag + 3e^{-} \pm 1^{\circ} 3Ag^{+}$		D)	$Au^{3+} + 3e^- \ddagger ^Au$			
86)	According to the Activity Seri	es chemistry reference table, v	which ion is	the strongest oxidizing agen	t?		
	A) Al ³⁺	B) Mg ²⁺	C)	Au^{3+}	D)	Ni ²⁺	
87)	Given the reaction:						
	$Zn(s) + Cu^{2+}(aq) \ddagger 2n^{2+}$	C(aq) + Cu(s)					
	What particles must be transfe	erred from one reactant to the	other reacta	nt?			
	A) electrons	B) protons	C)	neutrons	D)	ions	
88)	In the reaction $Cl_2 + H_2O \ddagger 1$	HClO + HCl, the hydrogen is					
	A) both oxidized and reducedB) oxidized, only	I		neither oxidized nor reduce reduced, only	d		
89)	In the reaction $3\text{Cl}_2 + 6\text{NaOH} \ddagger 5\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O}$, Cl_2 undergoes						
	A) both oxidation and reduct B) neither oxidation nor redu			oxidation, only reduction, only			
90)	In the reaction $Zn^0 + Cu^{2+} \ddagger Zn^{2+} + Cu^0$, which species is oxidized?						
	A) Cu ⁰	B) Cu ²⁺	C)	Zn^0	D)	Zn^{2+}	
91)	In the reaction Pb + Cu^{2+} ##^ 1	$Pb^{2+} + Cu$, the Cu^{2+} ions					
	A) loses protons	B) loses electrons	C)	gains electrons	D)	gains protons	
92)	As an S2- ion is oxidized to an	S^0 atom, the number of proton	ns in its nuc	eleus			
	A) increases	B) decreases		C) rema	ins th	e same	
93)	Which of the following is not a	an oxidation and reduction rea	action?				
	A) KOH + HCl ‡‡ KCl + H ₂ C)		$2KClO_3 \ddagger ^2NCl + 3O_2$			
	B) $2K + 2H_2O \ddagger 2KOH + H_1$	2	D)	2K + Cl ₂ ‡‡ ^ 2KCl			
94)	Which equation represents a r	edox reaction?					
	A) $O_2 + 2H_2 \ddagger ^2H_2O$		C)	$OH^- + H^+ \ddagger ^ H_2O$			
	B) $SO_2 + H_2O \ddagger ^H_2SO_3$		D)	$SO_3^{2-} + 2H^+ \ddagger ^{*} H_2SO_3$			
95)	In the reaction $Al + Cr^{3+} \ddagger A$	$\Lambda 1^{3+}$ + Cr, the reducing agent is	S				
	A) Cr	B) Cr ³⁺	C)	Al ³⁺	D)	Al	
96)	In the reaction $Zn + Cu^{2+} \ddagger ^2$	Zn ²⁺ + Cu, the reducing agen	t				
	A) loses electrons	B) gains electrons	C)	gains protons	D)	loses protons	

						3876 - 1 -
97)	Given the oxidation-reduction	reaction:				
	$H_2 + 2Fe^{3+} + \ddagger ^2H^+ + 2F$	e2+				
	Which species undergoes redu	action?				
	A) Fe ³⁺	B) H ₂	C)	Fe ²⁺	D) 1	H^+
98)	Which ion can be both an oxid	izing agent and a reducing agent?				
	A) Sn ²⁺	B) Fe ³⁺	C)	A1 ³⁺	D) (Cu ²⁺
99)	In the reaction $MnO_2 + 4HCl \ddagger$	$^{\text{MnCl}_2 + 2H_2O + Cl}_2$, which spe	ecies is	reduced?		
	A) H ⁺	B) Cl-	C)	Mn^{4+}	D) (O ² -
100)	Given the reaction:					
	$Mg + 2H^{+} \ddagger Mg^{2+} + Hg^{2}$	2				
	The reducing agent is					
	A) H ₂	B) Mg	C)	Mg^{2+}	D)	H ⁺
101)	Which occurs in the half-read	etion Cu ²⁺ + 2e ⁻ ‡‡^ Cu?				
	A) Cu loses electrons.		C)	Cu ²⁺ is reduced.		
	B) Cu gains electrons.		D)	Cu ²⁺ is oxidized.		
102)	Which half-reaction correctly	represents reduction?				
	A) $Ni^{4+} + 3e^{-} \pm ^Ni^{+}$		C)	Mn^{7+} ##^ Mn^{4+} + 3e-		
	B) $S^{2-} + 2e^{-} \ddagger \hat{S}^{0}$		D)	$S^{2-} \ddagger \hat{S}^{0} + 2e^{-}$		
103)	Which element is the poorest	reducing agent?				
	A) Zn	B) Ba	C)	Al	D)	H ₂
104)	What happens to reducing ag	gents in chemical reactions?				
	A) Reducing agents are oxic		C)	Reducing agents are re-		
	B) Reducing agents gain ele		D)	Reducing agents gain p	rotons.	
105)		s oxidized in a chemical reaction?				
	A) a loss of electrons and a decrease in oxidation numberB) a gain in electrons and an increase in oxidation number					
	C) a loss of electrons and an increase in oxidation number					
	D) a gain in electrons and a	decrease in oxidation number				
106)	In the equation $Cu(s) + 2Ag^+$	$f(aq) \pm 2Ag(s)$, the ox	xidizing	agent is		
	A) Ag^0	B) Ag ⁺	C)	Cu ²⁺	D)	Cu^0
107)	Given the reaction:					
	$2Na + 2H_2O \ddagger 2Na^+ + 2$	2OH-+H ₂				
	Which substance is oxidized	?				
	A) Na ⁺	B) H ⁺	C)	Na	D)	Н
108)	In the reaction $2H_2S + 3O_2 \ddagger$	$$^2SO_2 + 2H_2O$$, the oxidizing ager	nt is			
	A) water	B) hydrogen sulfide	C)	oxygen	D)	sulfur dioxide

Compared to the amount of mass and total charge at the beginning of a redox reaction, the amount of mass and total charge

B) less

C) the same

109)

upon completion of the reaction is

A) greater

110)	Which of the following is a redox reaction?						
	A) $2NH_4Cl + Ca(OH)_2 \ddagger ^2NH_4Cl + Ca(OH)_2 = 4$	$H_3 + 2H_2O + CaCl_2$	C)	$2H_2O \ddagger 2H_2 + O_2$			
	B) $CaCO_3 \ddagger \ddagger CaO + CO_2$			NaOH + HCl ‡‡^ NaCl + H2O			
111)	Oxidation-reduction reactions occur because of the competition between particles for						
	A) protons	B) positrons	C)	electrons	D) neutrons		
112)	In the reaction $Cu + 2H_2SO_4 \ddagger CuSO_4 + 2H_2O + SO_2$, copper is						
	A) oxidized and is the reducing agent			reduced and is the oxidizing agent			
	B) oxidized and is the oxidizing agent			reduced and is the reducing agent			
113)	Which quantities are conserved in all oxidation-reduction reactions?						
	A) both charge and mass		C)	neither charge nor mass			
	B) charge, only		D)	mass, only			
114)	In the reaction Mg + 2HCl ##^ M	IgCl ₂ + H ₂ , the magnesium					
	A) loses electrons and is reduce	eed	C)	loses electrons and is oxidize	ed		
	B) gains electrons and is oxidiz	zed	D)	gains electrons and is reduce	ed		