Name:

Given the reaction: 1)

 $3Mg(s) + 2Cr^{3+}(aq) \pm 3Mg^{2+}(aq) + 2Cr(s)$

Based on the *Standard Electrode Potentials* * chemistry reference table, what is the potential (E^0) for the overall reaction?

A) -1.63 volts	B) -3.11 volts	C) +1.63 volts	D) +3.11 volts

Questions 2 and 3 refer to the following:

The diagram below represents a voltaic cell.

- Which of the following statements correctly describes the direction of flow for the ions in this cell when the switch is closed? 2)
 - A) Ions do not move through the salt bridge in either direction.
 - B) Ions move through the salt bridge in both directions.
 - C) Ions move through the salt bridge from C to B, only.
 - D) Ions move through the salt bridge from *B* to *C*, only.
- When the switch is closed, which group of letters correctly represents the direction of electron flow? 3)

B) D , E , F , AC) A , F , E , DD) D , C , B , AA) A , B , C , D

According to the Activity Series chemistry reference table, which element will react spontaneously with Al3+ at 298 K? 4) B) Ni C) Li D) Au A) Cu

Questions 5 and 6 refer to the following:

The diagram below represents a voltaic cell at 298 K and 1 atmosphere.

6)	When switch S is closed, electro	ns in the external circuit will flow f	rom			
	A) Zn to Cu	B) Zn to Zn^{2+}	C)	Cu to Zn	D)	Cu to Zn ²⁺
7)	Which reaction occurs when a s	trip of magnesium metal is placed i	in a s	olution of CuCl ₂ ?		
	A) The magnesium metal is oxidB) The magnesium metal is red	lized. uced.	C) D)	The chloride ion is oxidized. The chloride ion is reduced.		
8)	In order for a redox reaction to b	e spontaneous, the potential (E^0)	for th	e overall reaction must be		
	A) greater than zeroB) less than -1		C) D)	zero between zero and -1		
9)	According to the Activity Series	chemistry reference table, which r	netal	will react spontaneously with	$H^+?$	
	A) Cr	B) Cu	C)	Ag	D)	Au
10)	Given the reaction:					
	$Zn(s) + Br_2(aq) \ddagger 2n^2+(aq)$)+2Br-(aq)				
	Based on the <i>Standard Electroa</i> reaction?	le Potentials* chemistry reference	table	e, what is the net cell potential	(E ⁰)) for the overall
	A) 0.33 V	B) -1.09 V	C)	+1.85 V	D)	+0.76 V
11)	A student wishes to set up an ve	oltaic cell. The following list of ma	terial	s and equipment will be used:		
	 d two 250-mL beakers d wire d one piece of Zn metal d 125 mL of 0.10 M Zn(NO₃)₂ d voltmeter d switch d one piece of Pb metal d 125 mL of 0.10 M Pb(NO₃)₂ 	2				
	For the cell to operate properly,	the student will also need				
	A) an external path for electronB) a salt bridge	S	C) D)	an anode a cathode		
12)	What is the voltage for a chemic	al cell that has reached equilibriun	n?			
	A) between 0 and 1	B) greater than 1	C)	1	D)	0
13)	According to the <i>Activity Series</i> Zn ⁺ ions?	chemistry reference table, which r	netal	will react spontaneously with	Ag ⁺	ions, but <i>not</i> with
	A) Cu	B) Mg	C)	Au	D)	Al
14)	In a voltaic cell the anode is the	electrode at which				
	A) oxidation occurs and protonB) reduction occurs and proton	as are lost as are lost	C) D)	oxidation occurs and electro reduction occurs and electro	ns ar ns a	re lost re lost

D) lose electrons

Questions 15 through 17 refer to the following:

The diagram below represents a voltaic cell at 298 K.

- 15) As the reaction in this cell takes place, the concentration of Ni^{2+} ions
 - A) decreases and the concentration of Ag⁺ ions increases
 - B) increases and the concentration of Ag⁺ ions increases
 - C) increases and the concentration of Ag⁺ ions decreases
 - D) decreases and the concentration of Ag^+ ions decreases

16) In the given reaction, the Ag^+ ions

- A) lose protons B) gain electrons
- 17) According to the *Standard Electrode Potentials** chemistry reference table, what is the potential (E^0) for the cell when the switch is closed?

C) gain protons

- A) 1.86 V B) 1.34 V C) 1.06 V D) 0.54 V
- 18) The diagram below represents an voltaic cell.

When switch *S* is closed, which particles undergo reduction?

	A) Cu atoms	B) Zn^{2+} ions	C) Zn atoms	D) Cu^{2+} ions	
19)	19) According to the <i>Activity Series</i> chemistry reference table, which molecule is <i>most</i> easily reduced?				
	A) Br ₂	B) Cl ₂	C) F ₂	D) I2	

Questions 20 and 21 refer to the following:

The voltaic cell below is at 298 K and 1 atmosphere.

Questions 27 and 28 refer to the following:

The diagram below represents a voltaic cell at 298 K. The equation under the diagram represents the net cell reaction.

			~	– Voltmeter		
	C	0-	+9	Switch		
	A A	Al Brid	alt dge 1.0 M	Cu Cu Cu(NO ₃) ₂		
		2Al ⁰ (s) + 3Cu ^{2+(aq)}	→2Al ³⁺	(aq) + 3Cu ⁰ (s)		
27)	When switch S is closed, electro	ons in the external circuit will	flow from			
	A) Cu to Cu^{2+}	B) Cu to Al	C)	Al to Cu	D) Al to Al^{3+}	
28)	According to the <i>Standard Elec</i> switch <i>S</i> is closed?	ctrode Potentials* chemistry	reference t	able, what is the maximur	n potential (E^0) for the cell wh	en
	A) -2.00 volts	B) -1.32 volts	C)	2.00 volts	D) 1.32 volts	
29)	Which reaction will take place s	pontaneously?				
	A) $Pb + 2H^+ \ddagger Pb^{2+} + H_2$		C)	$2Au + 6H^{+} \pm 2Au^{3+} +$	- 3H ₂	
	B) $2Ag + 2H^+ \ddagger 2Ag^+ + H_2$		D)	$Cu + 2H^+ \ddagger Cu^{2+} + H_2$	2	
30)	What is the electron flow in a w	ire connecting the Zn and Cu	electrodes	of a zinc-copper voltaic	cell at standard conditions?	
	A) from positive Cu to negativeB) from negative Zn to positive	e Zn e Cu	C) D)	from positive Zn to nega from negative Cu to pos	ative Cu itive Zn	
31)	According to the Activity Serie.	s chemistry reference table, w	hich specie	es can reduce Cr ³⁺ ions?		
	A) Fe ²⁺	B) Al	C)	Ni	D) Sn ²⁺	
32)	According to the <i>Standard Elec</i> oxidizing agent?	ctrode Potentials* chemistry	reference t	able, which can act as bo	th a reducing agent and an	
	A) Au ³⁺	B) Zn ²⁺	C)	Fe ²⁺	D) Al ³⁺	
33)	Given the reaction:					
	$Fe(s) + Cu^{2+} \ddagger Fe^{2+} + Cu^{2+}$	(s)				
	Based on Standard Electrode H	Potentials* chemistry reference	ce table, wł	hat is the potential (E^0) for	or the overall reaction?	
	A) +0.11 V	B) -0.79 V	C)	-0.11 V	D) +0.79 V	
34)	Based on the <i>Standard Electron</i> standard hydrogen half-cell?	de Potentials* chemistry refe	erence table	e, which half-cell has a <i>low</i>	wer reduction potential than the	ıe
	A) $Cl_2(g) + 2e^{-} \pm 2Cl^{-}$		C)	$Fe^{2+} + 2e^{-} \ddagger Fe(s)$		
	B) $Cu^{2+} + 2e^{-} \ddagger^{Cu}(s)$		D)	$I_2(s) + 2e^{-} \pm 2I^{-}$		
35)	At 298 K, which metal will release	se H ₂ (g) when reacted with H	Cl(aq)?			
	A) Au(s)	B) $Ag(s)$	C)	Zn(s)	D) Hg(l)	

 $2Ag^{+} + Zn^{0} \pm 2Ag^{0} + Zn^{2+}$ Based on the *Standard Electrode Potentials* * chemistry reference table, what is the net potential (E^0) for the cell? B) 0.04 V C) 1.56 V D) 0.84 V A) 2.36 V Which metal will react with HCl(aq) to produce hydrogen gas? 37) A) Cu B) Ag C) Au D) Zn Based on the *Standard Electrode Potentials** chemistry reference table, what is the cell voltage (E^0) for the overall reaction? 38) $Mg(s) + 2Ag^{+}(aq) \ddagger Mg^{2+}(aq) + 2Ag(s)$ A) +3.97 V B) +2.37 V C) +1.57 V D) +3.17 V Given the reaction: 39) $2Cr(s) + 3I_2(s) \pm 2Cr^{+3}(aq) + 6I^{-}(aq)$ Based on the Standard Electrode Potentials* chemistry reference table, the potential difference (E^0) of this cell is A) 2.36 V B) 0.14 V C) 0.20 V D) 1.28 V 40) A discharging lead-acid battery is *best* described as a(n) A) voltaic cell that produces an electric current C) electrolytic cell that produces an electric current B) voltaic cell that uses an electric current D) electrolytic cell that uses an electric current What is the purpose of the salt bridge in a voltaic cell? 41) A) It prevents ion migration. C) It allows ion migration. D) It allows electron flow. B) It prevents electron flow. Based on the Standard Electrode Potentials* chemistry reference table, what is the oxidation potential (E^0) of the half-reaction 42) $Cu(s) \pm Cu^{+} + e^{-?}$ B) +0.34 volt A) -0.34 volt C) -0.52 volt D) +0.52 volt Which species acts as the anode when the reaction $Zn(s) + Pb^{2+}(aq) \ddagger Zn^{2+}(aq) + Pb(s)$ occurs in a voltaic cell? 43) C) $Zn^{2+}(aq)$ B) Zn(s) D) $Pb^{2+}(aq)$ A) Pb(s) According to the Activity Series chemistry reference table, which will reduce Mg²⁺ to Mg(s)? 44) A) Ag(s) B) Fe(s) C) Ba(s) D) Pb(s) A standard hydrogen half-cell is connected to a standard silver half-cell by means of a wire and a salt bridge. According to the 45) Standard Electrode Potentials* chemistry reference table, the maximum standard potential (E^0) for the cell is A) -0.80 volt B) +0.80 volt C) +1.60 volts D) -1.60 volts

Questions 46 and 47 refer to the following:

The diagram below represents a voltaic cell. The reaction occurs at 1 atmosphere and 298 K.

Questions 54 and 55 refer to the following:

The diagram below represents a voltaic cell at 298 K and 1 atmosphere.

2265 - 1	- Page	9
----------	--------	---

60)	0) According to the <i>Standard Electrode Potentials</i> * chemistry reference table, which species can reduce Fe^{3+} to Fe^{2+} ?				
	A) Ag(s)	B) Br-	C)	Au(s)	D) I-
61)	Given the reaction:				
	2Cr(s) + 3Cu ²⁺ ‡‡ [*] 3Cu(s) +	2Cr ³⁺			
	Based on the Standard Electrod	de Potentials* chemistry reference	table	e, the cell potential (E^0) for the	e overall reaction is
	A) +0.40 V	B) -0.40 V	C)	+1.08 V	D) -1.08 V
62)	Given the overall cell reaction:				
	$Zn(s) + 2Ag^{+}(aq) \ddagger 2n^{+2}(aq)$	(aq) + 2Ag(s)			
	Which of the following will occu	ar as the cell operates?			
	A) The amount of $Zn(s)$ will in	crease.	C)	The concentration of $Zn^{+2}(a)$	aq) will increase.
	B) The amount of $Ag(s)$ will define the second se	ecrease.	D)	The concentration of Ag ⁺ (a	q) will increase.
63)	Which half-cell reaction serves	as the arbitrary standard used to d	eterm	ine the standard electrode por	tentials?
	A) $Na^+ + e^- \ddagger Na(s)$		C)	$2H^+ + 2e^- \ddagger H_2(g)$	
	B) $F_2(g) + 2e^{-} \ddagger 2F^{-}$		D)	$Ag^+ + e^- \ddagger Ag(s)$	
64)	Given the reaction:				
	$2Au^{3+}(aq) + 3Ni^{0} \pm 2Au^{0}$	+ 3Ni ²⁺ (aq)			
	Based on the Standard Electrod	de Potentials* chemistry reference	table	e, the cell potential (E^0) for the	e overall reaction is
	A) 2.28 volts	B) 1.24 volts	C)	1.76 volts	D) 3.78 volts
65)	Which ion will oxidize Fe?				
	A) Mg ²⁺	B) Zn ²⁺	C)	Ca ²⁺	D) Cu ²⁺
66)	According to the <i>Standard Elec</i> to produce Au ³⁺ ?	ctrode Potentials* chemistry refere	ence	table, which halogen will react	spontaneously with Au(s)
	A) Cl ₂	B) Br ₂	C)	F_2	D) I2
67)	Given the reaction:				
	$Zn(s) + Ni^{2+}(aq) \ddagger 2n^{2+}(aq)$	(q) + Ni(s)			
	Based on the Standard Electrod	de Potentials* chemistry reference	table	e, what is the cell voltage (E^0)	for the overall reaction?
	A) 0.76 V	B) 1.02 V	C)	0.50 V	D) 0.26 V
68)	A voltaic cell differs from an element	ctrolytic cell because in a voltaic co	ell the	ere is	
	A) an anode and a cathodeB) an electric current that caus	ses a redox reaction	C) D)	a redox reaction that produce a positive and negative elect	es an electric current trode
69)	The overall reaction in a voltaic	cell is $Zn(s) + Cu^{2+}(aq) \ddagger Zn^{2+}(aq)$	aq) +	Cu(s). As the reaction in this	cell takes place, the
	A) mass of the $Cu(s)$ electrode	decreases	C)	mass of the $Zn(s)$ electrode of	decreases
	B) $Zn^{2+}(aq)$ concentration rem	nains the same	D)	Cu ²⁺ (aq) concentration rema	ains the same
70)	The number of electrons moving	g in a wire is measured in	\sim	. 16	
-	A) degrees	ы) ampneres	C)	voits	D) joules
71)	The half-reaction $2H^+(aq) + 2e^-$	II H ₂ (g) will occur when $H^+(aq)$ r	reacts	s with	

A) Ag(s) B) Hg(l) C) Pb(s) D) Cu(s)

 (E^0) of

72) Given the overall cell reaction:

 $Cu^{+2} + X \ddagger X^{+2} + Cu$

According to the Activity Series chemistry reference table, X must represent

	A) Zn ²⁺	B) Ag	C) Zn	D) Ag ⁺
73)	According to the <i>Standard Elec</i>	trode Potentia	ls* chemistry reference table, which half-	reaction has a reduction potentia

	A) $Au^{3+} + 3e^{-} \pm Au(s)$		C)	$Ba^{2+} + 2e^{-} \pm \pm Aa(s)$		
	B) $Cr^{3+} + 3e^{-} \ddagger Cr(s)$		D)	$Sn^{2+} + 2e^{-} \pm n(s)$		
74)	Which metal will react with hydro	ochloric acid and produce H ₂ (g)?				
	A) Ag	B) Cu	C)	Mg	D)	Au
75)	Which half-reaction is used as th	e standard for determining the rela	tive	reducing tendencies of other.	Activ	vity Series metals?
	A) $Na^+ + e^- \ddagger Na(s)$		C)	$2H^+ + 2e^- \ddagger H_2(g)$		
	B) $F_2(g) + 2e^{-} \pm 2F^{-}$		D)	$Ag^+ + e^- \ddagger Ag(s)$		
76)	Based on the Activity Series cher	mistry reference table, which ion is	mos	t easily oxidized?		
	A) I-	B) F-	C)	Br-	D)	Cl-
77)	Based on the Activity Series cher	mistry reference table, which metal	will	react with H ⁺ ions to produce	H2(g	g)?
	A) Mg	B) Au	C)	Cu	D)	Ag
78)	Given the reaction:					

 $2Na(s) + Cl_2(g) \ddagger 2Na^+ + 2Cl^-$

Based on the *Standard Electrode Potentials** chemistry reference table, what is the potential (E^0) for the overall reaction? A) +4.07 V B) -4.07 V C) +1.35 V D) -1.35 V

79) The diagram below represents a voltaic cell at 298 K.

When the switch is closed, electrons flow from

- A) Al(s) to Ni(s)
- B) $Ni^{2+}(aq)$ to $Al^{3+}(aq)$

- C) $Al^{3+}(aq)$ to $Ni^{2+}(aq)$
- D) Ni(s) to Al(s)

80) Given the reaction:

 $Mg + Fe^{2+} \ddagger Mg^{2+} + Fe$

	A) 2.81 volts	B) 1.93 volts	C) 0.44 volts	D) 2.37 volts
81)	According to the Activity	Series chemistry reference table	e, which ion will react spontaneou	sly with Ag?
	A) Mg ²⁺	B) Mn ²⁺	C) Al ³⁺	D) Au ³⁺
82)	The diagram below represe	ents a voltaic cell.		
		ς	tob	
			Voltmeter	
		AI —	— Ni	
		1.01		
		AI(NO	N_{3}_{3} Ni(NO ₃) ₂	
	In order for the cell to oper	ate, it should be provided with		
	A) an anodeB) an external path for electronic descente des	actrons	C) a salt bridge	
83)	Given the reaction:		D) a cathode	
05)				
	$2Al(s) + 3Pb^{2+}(aq) \ddagger$	$2Al^{3+}(aq) + 3Pb(s)$		
	Based on the Standard Ele	ectrode Potentials* chemistry	reference table, the potential (E^0)	for the overall reaction is
	A) 3.71 V	B) 1.79 V	C) 2.93 V	D) 1.53 V
84)	Given the reaction:			
	2E, 3+ + 2E ++* 2E, 2+	, T		
	$2Fe^{3^{+}} + 2I^{-} \mp 2Fe^{2^{+}}$	+ 12		
	Based on the Standard Ele	ectrode Potentials* chemistry	reference table, the net potential (E^{0}) for the overall reaction is
	A) 2.08 V	B) 1.31 V	C) 0.23 V	D) 1.00 V
85)	In a voltaic cell composed	of two half-cells, ions are allow	red to flow from one half-cell to an	other by means of
	A) electrodes		C) a salt bridge	
00	B) a voltmeter		D) an external conduc	ctor
86)	According to the Standard highest net potential (F_0) ?	<i>i Electrode Potentials</i> * chemis	stry reference table, which overall	reaction in a chemical cell has the
	A) $Mg(s) + 2H^+ + M\sigma^2$	+ + H ₂ (g)	() $Zn(s) + 2H^+ + 7$	$n^{2+} + H_2(g)$
	B) $Sn(s) + 2H^+ + sn^{2+}$	+ H ₂ (g)	D) Ni(s) + $2H^+$ ++^ Ni	$2^+ + H_2(g)$
	-10^{-10} -10^{-1} -10^{-1} -10^{-1}	112(5)	$D_{j} = 11(3) + 211 + 111$	112(8)

Based on the *Standard Electrode Potentials* * chemistry reference table, the potential difference (E^0) of this cell is

87) What type of chemical reaction generates the electrical energy produced by a battery?

A)	addition	C)	oxidation-reduction
B)	substitution	D)	neutralization

2265 - 1 -	Page	12
------------	------	----

According to the Activity Series chemistry reference table, which reaction will take place spontaneously? 88) A) $Sr^{2+} + Sn(s) \ddagger r(s) + Sn^{2+}$ C) $Au^{3+} + Al(s) \ddagger Au(s) + Al^{3+}$ B) $Fe^{2+} + Cu(s) \pm fe(s) + Cu^{2+}$ D) $Ni^{2+} + Pb(s) \pm i Ni(s) + Pb^{2+}$ Which of the following will oxidize Zn(s) to Zn^{2+} , but will *not* oxidize Pb(s) to Pb²⁺? 89) B) Mg^{2+} C) Al³⁺ D) Au³⁺ A) Co²⁺ Given the reaction: 90) $Fe + Sn^{2+} \ddagger Fe^{2+} + Sn$ Based on the *Standard Electrode Potentials* * chemistry reference table, what is the potential difference (E^0) of this cell? A) 0.59 V C) 0.45 V B) 0.14 V D) 0.31 V According to the Standard Electrode Potentials* chemistry reference table, which reaction will occur spontaneously? 91) C) $Mg^{2+} + Sn^{2+} \ddagger Mg(s) + Sn^{4+}$ A) $Ag^+ + Cu(s) \ddagger Ag(s) + Cu^+$ B) $Co^{2+} + Cu(s) \ddagger Co(s) + Cu^{2+}$ D) $Fe^{2+} + Hg(I) \ddagger Fe(s) + Hg^{2+}$ Which metal will react spontaneously with HCl(aq)? 92) B) Cu C) Ca D) Ag A) Au 93) The type of reaction in an voltaic cell is best described as a A) spontaneous oxidation reaction, only C) spontaneous oxidation-reduction reaction B) nonspontaneous oxidation-reduction reaction D) nonspontaneous oxidation reaction, only According to the Standard Electrode Potentials* chemistry reference table, what is the standard electrode potential (E^0) for the 94) oxidation of Cu(s) to Cu^{2+} ? A) +0.34 V B) -0.34 V C) +0.52 V D) -0.52 V Given the reaction: 95) $Mg(s) + Zn^{2+}(aq) \pm Mg^{2+}(aq) + Zn(s)$ Based on the *Standard Electrode Potentials** chemistry reference table, what is the cell voltage (E^0) for the overall reaction?

When this cell operates, the electrons flow from the

96)

- A) zinc half-cell to the copper half-cell through the wire
- B) zinc half-cell to the copper half-cell through the salt bridge
- C) copper half-cell to the zinc half-cell through the salt bridge
- D) copper half-cell to the zinc half-cell through the wire

97)) According to the <i>Activity Series</i> chemistry reference table, which metal reacts spontaneously with Ni ⁺² ?					
	A) Sn	B) Ag	C)	Cu	D)	Fe
98)	Electrochemical cells that produc	e positive E^0 values have				
	A) oxidation half-reactions, only	/	C)	redox reactions that occur sp	onta	neously
	B) redox reactions that do not o	occur spontaneously	D)	reduction half-reactions, only	/	
99)	Based on the Activity Series cher	mistry reference table, which metal	will	reduce Sn ²⁺ to Sn?		
	A) Cu	B) Au	C)	Fe	D)	Ag
100)	According to the Activity Series	s chemistry reference table, which	meta	al can reduce Ni ²⁺ ions?		
	A) Pb	B) Cu	С) Fe	D)	Ag
101)	According to the Activity Series	s chemistry reference table, which	meta	al will react spontaneously with	1 hyd	Irochloric acid?
	A) zinc	B) copper	С) silver	D)	gold