

Given the electrochemical cell above:

- 1. Determine both the spontaneous oxidation half-reaction and the spontaneous reduction half-reaction.
- 2. Determine the net ionic equation for the reaction which would occur.
- 3. Calculate the E^0 for the cell.

ELECTROCHEMICAL CELLS (A BATTERY)

Electrochemical cells (Chemical cells) produce an electric current by means of a chemical reaction. Batteries are examples of electrochemical cells.

Electrochemical cells consist of two discrete half-cells which are separated by a salt bridge or porous partition and connected by an external conductor.

Characteristics of Electrochemical Cells

- Half-cells The redox reaction is separated into two half-cells by means of the salt bridge.

 One cell contains the oxidation half-reaction and the other the reduction half reaction.
- Metal Electrodes Metal electrodes allow electrons to flow into and out of the cell. There are two electrodes, an anode and a cathode. Oxidation always occurs at the anode and reduction always occurs at the cathode.
- **Salt Bridge** The salt bridge is used to isolate each half-cell but allow the migration of ions into each solution maintaining the solution's electrical neutrality.
- **Voltmeter** The voltmeter measures the potential difference between the two half-cells. The theoretical voltmeter value is called the Standard Cell Potential, E⁰.

STANDARD HYDROGEN ELECTRODE

The standard half-cell reaction against which all others are measured is the standard hydrogen electrode (SHE), and has a cell potential of 0.00 volts.

The standard hydrogen electrode consists of hydrogen gas at 25°C and 1.0 atm. bubbled into an exact 1.00 M H⁺(aq) solution with an inert platinum metal electrode.

- 1. Determine both the spontaneous oxidation and the spontaneous reduction half-reactions.
- 2. The net ionic equation for the overall reaction.
- 3. The standard cell potential, E^0 .
- 4. The anode and cathode.
- 5. The current flows from _____ to ____.
- 6. The species oxidized and the species reduced.
- 7. The increases, decreases, the same

The Standard Cell Potential, E⁰

The Standard Cell Potential, E⁰, is a measure of the electrical potential difference between the two half cells. The standard state for electrochemical cells is a 1.0 M solution at 25°C (298 K) and 1 atmosphere pressure.

As the concentration decreases, the voltmeter reading decreases. At equilibrium, E^0 is zero. (Dead Battery)

To calculate E^0 , determine the electrode potential for each half-cell on *Chart N* and find their difference. (Subtract the *more* negative value from the *more* positive value)

 E^0 = $\frac{\text{Cell voltage for the}}{\text{Reduction reaction}}$ - $\frac{\text{Cell voltage for the}}{\text{Oxidation reaction}}$

For a Fe/Fe²⁺ and Mg/Mg²⁺ reaction $E^{0} = -0.45 \text{ v.} - (-2.37 \text{ v.}) = 1.92 \text{ volts}$

- 1. Determine both the spontaneous oxidation and the spontaneous reduction half-reactions.
- 2. The net ionic equation for the overall reaction.
- 3. The standard cell potential, E^0 .
- 4. The anode and cathode.
- 5. The current flows from _____ to ____.
- 6. The species oxidized and the species reduced.
- 7. The [] increases, decreases, the same

- 1. Determine both the spontaneous oxidation and the spontaneous reduction half-reactions.
- 2. The net ionic equation for the overall reaction.
- 3. The standard cell potential, E^0 .
- 4. The anode and cathode.
- 5. The current flows from _____ to ____.
- 6. The species oxidized and the species reduced.
- 7. The increases, decreases, the same