Thermochemistry and Thermodynamics Worksheet 2

1. Given the following: $\quad \mathrm{C}{ }_{2} \mathrm{H}_{4(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})}---->2 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \Delta \mathrm{H}=-1322.9 \mathrm{~kJ}$ $\Delta \mathrm{H}_{\mathrm{f}} \mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}=+52.3 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{f}} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}=-241.8 \mathrm{~kJ} / \mathrm{mol}$
(A)Calculate the heat of formation of $\mathrm{CO}_{2(\mathrm{~g})}$.
(B)How much heat will be evolved when $140.0 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}$ is consumed?
(C) How many moles of $\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}$ will be required to produce $2,300 \mathrm{~kJ}$ of heat?
(D) If the molar volume of $\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}$ is $22.4 \mathrm{~L} / \mathrm{mol}$, how many liters of $\mathrm{C}_{2} \mathrm{H}_{4}$ are required in part (C)?
2. Given the following chemical reaction:

$$
2 \mathrm{Al}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}-\cdots--->\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{Fe}_{(\mathrm{s})}
$$

$\Delta \mathrm{H}_{\mathrm{f}} \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}=-822.2 \mathrm{~kJ} / \mathrm{mol} \quad \Delta \mathrm{H}_{\mathrm{f}} \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}=-1669.8 \mathrm{~kJ} / \mathrm{mol}$
(A)Calculate $\Delta \mathrm{H}$ for this reaction.
(B) If all the heat given off by reacting 1 mole of $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$ is absorbed by the products, what would be the change in temperature if the reaction goes to completion. (The specific heat of $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}=0.19 \mathrm{~J} / \mathrm{g} \cdot \mathrm{C}$ and the specific heat of $\mathrm{Fe}_{(\mathrm{s})}$ is $\left.0.48 \mathrm{~J} / \mathrm{g} \cdot \mathrm{C}\right)$
3. The combustion of 1.00 mol of sucrose, $\mathrm{C}{ }_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, evolves $5.65 \times 10^{3} \mathrm{~kJ}$ of heat. A bomb calorimeter with a calorimeter constant of $1.23 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$ contains 0.600 kg of water. How many grams of sucrose should be burned to raise the temperature of the calorimeter and its contents from $23.0^{\circ} \mathrm{C}$ to $50.0^{\circ} \mathrm{C}$? (The calorimeter constant represents the heat capacity of the empty calorimeter.) The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.

Thermochemistry and Thermodynamics Worksheet 2

4. The heat of reaction for burning 1 mole of a certain compound X is known to be -477.7 kJ . The calorimeter constant of the bomb being used is $2.5 \times 10^{3} \mathrm{~J} /{ }^{\circ} \mathrm{C}$ and the initial temperature of the water is $23.2^{\circ} \mathrm{C}$.
(A) If 96.54 g of compound $\mathrm{X}(\mathrm{MM}=46)$ is burned in the bomb calorimeter containing 2000 ml of water (S.H. $=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$), what will be the final temperature?
(B)How much water can be warmed from $23.2^{\circ} \mathrm{C}$ to $56.5^{\circ} \mathrm{C}$ when 172.0 g of the compound is burned in the bomb?
5. A $50.0-\mathrm{g}$ piece of metal at $60.0^{\circ} \mathrm{C}$ is placed in 200.0 g of water at $22.0^{\circ} \mathrm{C}$ contained in a coffee-cup calorimeter. The metal and water come to the same temperature at $32.5^{\circ} \mathrm{C}$.
(A)How much heat did the metal give up to the water?
(B)What is the specific heat of the metal?
(C) How many grams of the metal at $80^{\circ} \mathrm{C}$ would have to be used to heat half as much water $(100.0 \mathrm{~g})$ by to the same temperature?
6. Use Hess' Law to calculate $\Delta \mathrm{H}$ for the following reaction:
$4 \mathrm{HCN}(\mathrm{I})+9 \mathrm{O}_{2(\mathrm{~g})}---->4 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{NO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}$
Given:
$\mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{C}_{(\mathrm{s})}+\mathrm{N}_{2(\mathrm{~g})}---->2 \mathrm{HCN}_{(\mathrm{l})}$
$\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}---->\mathrm{CO}_{2(\mathrm{~g})}$
$2 \mathrm{NO}{ }_{2(\mathrm{~g})}---->\mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})}$
$2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}---->2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
$\Delta \mathrm{H}=+217.8 \mathrm{~kJ}$
$\Delta \mathrm{H}=-393.5 \mathrm{~kJ}$
$\Delta \mathrm{H}=-66.40 \mathrm{~kJ}$
$\Delta \mathrm{H}=-571.7 \mathrm{~kJ}$
