Thermochemistry and Thermodynamics Worksheet 3

1. Calculate ΔH_f of propane, C₃H₈, given the following information:

$$\begin{array}{ll} 2 \ C_3 H_{8(g)} + 10 \ O_{2(g)} & ----> \ 6 \ CO_{2(g)} + 8 \ H_2 O_{(l)} & \Delta H = -4439.4 \ kJ \\ C_{(s)} + O_{2(g)} & ----> \ CO_{2(g)} & \Delta H = -393.5 \ kJ \\ 2 \ H_{2(g)} + O_{2(g)} & ----> 2 \ H_2 O_{(l)} & \Delta H = -571.6 \ kJ \end{array}$$

2. When nitromethane, CH_3NO_2 (molecular mass = 61.05) is burned the reaction occurs: 2 $CH_3NO_{2(l)} + O_{2(g)} ----> 2 CO_{2(g)} + N_{2(g)} + 3 H_2O_{(g)}$

Given the following information:

$\Delta H_f CO_{2(g)} =$	-393.5 kJ/mol
$\Delta H_f 3 H_2 O_{(g)} =$	-241.8 kJ/mol
$\Delta H_{f} CH_{3} NO_{2(I)} =$	112.0 kJ/mol

(A) Calculate ΔH for the burning of 1 mole of nitromethane.

(B) Is the reaction exothermic or endothermic?

(C) What is ΔH when 18.02 g H₂O_(g) is formed in the above reaction?

3. Given the following information:

$\Delta H_{f} MgCl_{2(S)} =$	-641.8 kJ/mol
$\Delta H_f Mg^{2+}_{(aq)} =$	-462.0 kJ/mol
$\Delta H_{f} Cl^{-}(aq) =$	-167.4 kJ/mol

- (A) Calculate ΔH for the following reaction: MgCl_{2(s)} ----> Mg²⁺_(aq) + 2 Cl⁻_(aq)
- (B) If 3.17 g MgCl_{2(s)} (formula mass = 95.21) is dissolved in 250.0 g of water (S.H. = 4.184J/g°C) in a coffee-cup calorimeter, what would the final temperature of the water be if the water were initially at 19.00°C?