Thermochemistry and Thermodynamics Worksheet 3

1. Calculate $\Delta \mathrm{H}_{\mathrm{f}}$ of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, given the following information:
$2 \mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+10 \mathrm{O}_{2(\mathrm{~g})}---->6 \mathrm{CO}_{2(\mathrm{~g})}+8 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
$\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}---->\mathrm{CO}_{2(\mathrm{~g})}$
$\Delta \mathrm{H}=-4439.4 \mathrm{~kJ}$
$2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}---->2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
$\Delta \mathrm{H}=-393.5 \mathrm{~kJ}$
$\Delta \mathrm{H}=-571.6 \mathrm{~kJ}$
2. When nitromethane, $\mathrm{CH}_{3} \mathrm{NO}_{2}$ (molecular mass $=61.05$) is burned the reaction occurs:

$$
2 \mathrm{CH}{ }_{3} \mathrm{NO}_{2(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}---->2 \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Given the following information:

$$
\begin{array}{ll}
\Delta \mathrm{H}_{\mathrm{f} \mathrm{CO}_{2(\mathrm{~g})}=}=-393.5 \mathrm{~kJ} / \mathrm{mol} \\
\Delta \mathrm{H}_{\mathrm{f}} 3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}= & -241.8 \mathrm{~kJ} / \mathrm{mol} \\
\Delta \mathrm{H}_{\mathrm{f}} \mathrm{CH}_{3} \mathrm{NO}_{2(\mathrm{l})}= & 112.0 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

(A)Calculate $\Delta \mathrm{H}$ for the burning of 1 mole of nitromethane.
(B)Is the reaction exothermic or endothermic?
(C) What is $\Delta \mathrm{H}$ when $18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ is formed in the above reaction?
3.Given the following information:

$$
\begin{array}{ll}
\Delta \mathrm{Hf} \mathrm{MgCl}_{2(\mathrm{~S})}= & -641.8 \mathrm{~kJ} / \mathrm{mol} \\
\Delta \mathrm{Hf} \mathrm{Mg}^{2+}{ }_{(\mathrm{aq})}= & -462.0 \mathrm{~kJ} / \mathrm{mol} \\
\Delta \mathrm{H}_{\mathrm{f}} \mathrm{Cl}^{-}{ }_{(\mathrm{aq})}= & -167.4 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

(A)Calculate $\Delta \mathrm{H}$ for the following reaction: $\quad \mathrm{MgCl}_{2(\mathrm{~s})}---->\mathrm{Mg}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}^{-}{ }_{(\mathrm{aq})}$
(B)If $3.17 \mathrm{~g} \mathrm{MgCl}_{2(\mathrm{~s})}$ (formula mass $=95.21$) is dissolved in 250.0 g of water $\left(\mathrm{S} . \mathrm{H} .=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$ in a coffee-cup calorimeter, what would the final temperature of the water be if the water were initially at $19.00^{\circ} \mathrm{C}$?

