Thermochemistry and Thermodynamics Worksheet 4

- 1. For the reaction $A_{(g)} <===> B_{(g)} + C_{(g)}$, $K_p = 2 \times 10^{-4}$ at 25°C. A mixture of the three gases at 25°C is placed in a reaction flask and the initial pressures are: $P_A = 2$ atm, $P_B = 0.5$ atm, and $P_C = 1$ atm. At the instant of mixing, which of the following is true for the reaction in the forward direction.
- (A) $\Delta G < 0$
- (B) $\Delta G > 0$
- (C) $\Delta S = 0$
- (D) $\Delta G^{\circ} = 0$
- (E) $\Delta G^{\circ} < 0$
- 2. Which choice would definitely be non-spontaneous for the following changes in enthalpy (Δ H) and entropy (Δ S)?
- (A) $+\Delta H$ and $+\Delta S$
- (B) $+\Delta H$ and $-\Delta S$
- (C) $-\Delta H$ and $+\Delta S$
- (D) $-\Delta H$ and $-\Delta S$
- (E) $\Delta H = 0$ and $+\Delta S$
- 3. A catalyst is added to a system in equilibrium, which of the following events occurs?
- (A) The equilibrium shifts to the right.
- (B) The equilibrium shifts to the left.
- (C) There is no effect on equilibrium.
- (D) ΔH increases.
- (E) ΔH decreases.
- 4. Given the reaction: $N_{2(g)} + 3 H_{2(g)} <===> 2 NH_{3(g)} \Delta H = -24 kCal$ Which change will increase the equilibrium concentration of NH₃?
- (A) A decrease in the total pressure.
- (B) A decrease in [N₂].
- (C) A decrease in the temperature of the reaction chamber.
- (D) An increase in the volume of the reaction chamber.
- 5. For a given chemical system, the value of the equilibrium constant K will depend on temperature unless:
- (A) $\Delta G^{\circ} > 0$
- (B) $\Delta H^{\circ} = 0$
- (C) $\Delta S^{\circ} = 0$
- (D) $\Delta G^{\circ} < 0$
- (E) $\Delta n = 0$ (no change in the number of moles)

Thermochemistry and Thermodynamics Worksheet 4

6. The following chemical reaction occurs at 25°C:

2 $HNO_{3(I)}$ + 3 $H_2S_{(g)}$ ----> $W_{(s)}$ + 4 $H_2O_{(I)}$ + 2 $NO_{(g)}$ + 3 $S_{(s)}$

You are given the following thermodynamic data:

Species	ΔH°_{f} (kJ/mol)	∆G° _f (kJ/mol)
HNO _{3(I)}	-174.1	-80.8
$H_2S_{(g)}$	-20.6	-33.6
$H_2O_{(I)}$	-285.8	-237.2
NO _(g)	90.2	86.6

(A) What is the value of the standard Gibbs Free Energy for the system represented above?

(B) What is the value of the equilibrium constant for the system represented above? (R = 8.314 J/K)

(C) Calculate ΔS° at 25°C.

7. $K_{eq} = 36 \text{ at } 300^{\circ}\text{C}$ for the reaction: $A_{2(g)} + B_{2(g)} \iff 2 \text{ AB}_{(g)}$

(A) Calculate the ΔG° at 300°C for this reaction. (R = 8.314 J/K)

(B) What is ΔH for the reaction if ΔS° at 300°C is 20.0 J/mol•K?

(C) Calculate K_{eq} for the reaction: $AB_{(q)} \leq 1/2 A_{2(q)} + 1/2 B_{2(q)}$