Calculate the pH of $0.0050 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$.

Since HNO_{3} is a strong acid, HNO_{3} is completely ionized, and the $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ equals the molarity of the acid.

$$
\begin{gathered}
\begin{array}{ccc}
0.0050 \mathrm{M} & 100 \% & 0.0050 \mathrm{M} \\
\mathrm{HNO}_{3}(\mathrm{aq}) & \rightleftarrows & \mathrm{H}^{+}(\mathrm{aq})
\end{array}+\begin{array}{c}
0.0050 \mathrm{M} \\
\mathrm{NO}_{3}^{-}(\mathrm{aq})
\end{array} \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathrm{aq})\right] \\
\mathrm{pH}= \\
=-\log (0.0050 \mathrm{M})=2.30
\end{gathered}
$$

What is the $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ of a solution with a pH of 2.74?

$$
\begin{gathered}
{\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-\mathrm{pH}}} \\
{\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-2.74}=1.8 \times 10^{-3} \mathrm{M}}
\end{gathered}
$$

Find the pH of a 0.0025 M NaOH solution.
Since NaOH is a strong base, it is . 100% dissociated. Therefore, the $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$ equals the molarity of the NaOH solution.

$$
\begin{gathered}
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}(\mathrm{aq})\right] \\
\mathrm{pOH}=-\log (0.0025 \mathrm{M})=2.60 \\
\mathrm{pH}+\mathrm{pOH}=14 \\
\mathrm{pH}+2.60=14 \\
\mathrm{pH}=14-2.60=11.40
\end{gathered}
$$

What is the $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$ of a solution with a pH of 12.70?

$$
\begin{gathered}
\mathrm{pH}+\mathrm{pOH}=14 \\
12.70+\mathrm{pOH}=14 \\
\mathrm{pOH}=14-12.70=1.30 \\
{\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=10^{-\mathrm{pOH}}} \\
{\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=10^{-1.30}=0.05 \mathrm{M}}
\end{gathered}
$$

Calculate the percent ionization of a 0.0040 M solution of a weak acid with a pH of 2.52 .

$$
\begin{gathered}
{\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-\mathrm{pH}}} \\
{\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-2.52}=0.0030 \mathrm{M}} \\
\text { percent ionization }=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]}{\text { Molarity }} \times 100 \\
\% \text { ionization }=\frac{0.0030 \mathrm{M}}{0.0040 \mathrm{M}} \times 100=75 \%
\end{gathered}
$$

What is the pH of a 0.0060 M weak acid solution that is 3.0% ionized?

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]=0.0060 \mathrm{M} \times 0.030=1.8 \times 10^{-4} \mathrm{M}} \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathrm{aq})\right] \\
\mathrm{pH}=-\log \left(1.8 \times 10^{-4} \mathrm{M}\right)=3.74
\end{gathered}
$$

Calculate the K_{a} of a 0.0080 M acid which is 5.0 \% ionized.

$$
\mathrm{HB}(\mathrm{aq}) \mathbf{M} \mathrm{H}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq})
$$

$\left[\mathrm{H}^{+}(\mathrm{aq})\right]=0.0080 \mathrm{M} \times 0.05=0.00040 \mathrm{M}$

$$
\left[\mathrm{B}^{-}(\mathrm{aq})\right]=0.0080 \mathrm{M} \times 0.05=0.00040 \mathrm{M}
$$

$[\mathrm{HB}(\mathrm{aq})]=0.0080 \mathrm{M} \times 0.95=0.0076 \mathrm{M}$

$$
\begin{gathered}
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{B}^{-}(\mathrm{aq})\right]}{[\mathrm{HB}(\mathrm{aq})]} \\
\mathrm{K}_{\mathrm{a}}=\frac{(0.00040 \mathrm{M})(0.00040 \mathrm{M})}{0.0076 \mathrm{M}}=2.1 \times 10^{-5}
\end{gathered}
$$

Calculate the hydrogen ion concentration, $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$, in 0.5 M acetic acid. What is the pH of the solution? $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$.

$$
\begin{array}{ccc}
0.50 \mathrm{M}-\chi \\
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})
\end{array}+\mathrm{H}_{2} \mathrm{O}\left(\ell^{\downarrow}\right)^{\downarrow} \quad \begin{gathered}
\chi \mathrm{M} \\
\mathrm{H}^{+}(\mathrm{aq})
\end{gathered}+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})\right]}=\frac{(\chi)(\chi)}{(0.5-\chi)}=1.8 \times 10^{-5}
$$

$$
\mathrm{x}^{2}=1.8 \times 10^{-5}(0.5)-1.8 \times 10^{-5} \mathrm{x}
$$

since x « 0.5 M , then $1.8 \times 10^{-5} \mathrm{x} .0$

$$
\begin{gathered}
\mathrm{x}^{2}=1.8 \times 10^{-5}(0.5)=9.0 \times 10^{-6} \\
\mathrm{x}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]=3.0 \times 10^{-3} \mathrm{M} \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathrm{aq})\right] \\
\mathrm{pH}=-\log \left(3.0 \times 10^{-3} \mathrm{M}\right)=2.52
\end{gathered}
$$

Calculate the percent ionization of a 0.02 M $\mathrm{HF}(\mathrm{aq})$ solution. $\mathrm{K}_{\mathrm{a}}=3.5 \times 10^{-4}$.

$$
\begin{array}{ccc}
0.02 \mathrm{M}-\chi & \chi \mathrm{M} & \chi \mathrm{M} \\
\mathrm{HF}(\mathrm{aq})
\end{array}{ }^{-\mathrm{H}_{2} \mathrm{O}(\mathrm{e}) \downarrow} \begin{gathered}
\chi+\mathrm{H}^{+}(\mathrm{aq})
\end{gathered}+\mathrm{F}^{-}(\mathrm{aq})
$$

$$
\begin{gathered}
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{F}^{-}(\mathrm{aq})\right]}{[\mathrm{HF}(\mathrm{aq})]}=\frac{(\chi)(\chi)}{(0.02-\chi)}=3.5 \times 10^{-4} \\
\mathrm{x}^{2}=3.5 \times 10^{-4}(0.02)-3.5 \times 10^{-4} \times \\
\text { since } \mathrm{x} \ll 0.02 \mathrm{M} \text {, then } 3.5 \times 10^{-4} \times .0 \\
\mathrm{x}^{2}=3.5 \times 10^{-4}(0.02)=7.0 \times 10^{-6} \\
\mathrm{x}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]=2.6 \times 10^{-3} \mathrm{M}
\end{gathered}
$$

percent ionization $=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]}{\text { Molarity }} \times 100$

$$
\% \text { ionization }=\frac{0.0026 \mathrm{M}}{0.020 \mathrm{M}} \times 100=13 \%
$$

Acids ionize in water to form the hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$, and the base ion, $\mathrm{B}^{-}(\mathrm{aq})$.
$\mathrm{HB}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)^{\downarrow} \quad \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq})$

The K_{a} becomes

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]\left[\mathrm{B}^{-}(\mathrm{aq})\right]}{[\mathrm{HB}(\mathrm{aq})]}
$$

Bases hydrolyze in water to form a weak acid and hydroxide ions, $\mathrm{OH}^{-}(\mathrm{aq})$.

$$
\mathrm{B}^{-}(\mathrm{aq})+\mathrm{HOH}\left(\mathrm{~B} \mathbf{M H B}^{\mathrm{Haq})+\mathrm{OH}^{-}(\mathrm{aq})}\right.
$$

The K_{b} becomes

$$
\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HB}(\mathrm{aq})]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]}{\left[\mathrm{B}^{-}(\mathrm{aq})\right]}
$$

What is the relationship between K_{a} and K_{b} ?

$$
\begin{gathered}
\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}\left(1.00 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C}\right) \\
\mathrm{K}_{\mathrm{w}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]\left[\mathrm{B}^{-}(\mathrm{aq})\right]}{[\mathrm{HB}(\mathrm{aq})]} \times \frac{[\mathrm{HB}(\mathrm{aq})]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]}{\left[\mathrm{B}^{-}(\mathrm{aq})\right]} \\
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=1.00 \times 10^{-14}
\end{gathered}
$$

What is the K_{b} for the acetate ion, if the K_{a} for acetic acid is 1.8×10^{-5} ?

$$
\begin{gathered}
\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=1.0 \times 10^{-14} \\
1.8 \times 10^{-5}{\times \mathrm{K}_{\mathrm{b}}=1.0 \times 10^{-14}}_{\mathrm{K}_{\mathrm{b}}=5.6 \times 10^{-10}}
\end{gathered}
$$

What is the pH of a 0.01 M nitrous acid solution, $\mathrm{HNO}_{2}(\mathrm{aq}) ? \mathrm{~K}_{\mathrm{a}}=5.1 \times 10^{-4}$.

$$
\begin{gathered}
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{NO}_{2}^{-}(\mathrm{aq})\right]}{\left[\mathrm{HNO}_{2}(\mathrm{aq})\right]}=\frac{(\chi)(\chi)}{(0.01-\chi)}=5.1 \times 10^{-4} \\
\mathrm{x}^{2}=5.1 \times 10^{-4}(0.01)-5.1 \times 10^{-4} \mathrm{x} \\
\text { since } \mathrm{x} \ll 0.01 \mathrm{M}, \text { then } 5.1 \times 10^{-4} \mathrm{x} \cdot 0 \\
\mathrm{x}^{2}=5.1 \times 10^{-6} \\
\mathrm{x}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]=0.0023 \mathrm{M} \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathrm{aq})\right] \\
\mathrm{pH}=-\log (0.0023 \mathrm{M})=2.65
\end{gathered}
$$

What would be the pH of a 0.02 M NaF solution? $\mathrm{K}_{\mathrm{a}}(\mathrm{HF})=3.5 \times 10^{-4}$.

$$
\begin{gathered}
0.02 \mathrm{M}-\chi \\
\mathrm{F}^{-}(\mathrm{aq}) \quad \begin{array}{c}
\chi \mathrm{H}_{2} \mathrm{O}\left(\ell^{-}\right)^{\downarrow} \quad \begin{array}{c}
\chi \mathrm{M} \\
\mathrm{HF}(\mathrm{aq})
\end{array}+\begin{array}{c}
\chi \mathrm{M} \\
\mathrm{OH}^{-}(\mathrm{aq})
\end{array} \\
\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=1.0 \times 10^{-14} \quad \mathrm{~K}_{\mathrm{b}}=2.86 \times 10^{-11} \\
\mathrm{~K}_{\mathrm{b}}=\frac{[\mathrm{HF}(\mathrm{aq})]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]}{\left[\mathrm{F}^{-}(\mathrm{aq})\right]}=2.86 \times 10^{-11} \\
\mathrm{~K}_{\mathrm{b}}=\frac{(\chi)(\chi)}{(0.02-\chi)}=2.86 \times 10^{-11} \\
\mathrm{x}^{2}=2.86 \times 10^{-11}(0.02)-2.86 \times 10^{-11} \mathrm{x}
\end{array} .
\end{gathered}
$$

since $\mathrm{x} \ll 0.02 \mathrm{M}$, then $2.86 \times 10^{-11} \mathrm{x} .0$

$$
\begin{gathered}
\mathrm{x}^{2}=5.72 \times 10^{-13} \quad \mathrm{x}=7.6 \times 10^{-7} \mathrm{M} \\
\mathrm{pOH}=-\log (7.6 \times 10-7)=6.12 \\
\mathrm{pH}+\mathrm{pOH}=14 \quad \mathrm{pH}=14-\mathrm{pOH}=7.88
\end{gathered}
$$

What must be the molarity of a NaHCO_{3} solution if its pH is $10.00 . \mathrm{K}_{\mathrm{b}}=2.33 \times 10^{-8}$.

$$
\begin{gathered}
\mathrm{pH}+\mathrm{pOH}=14 \quad\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=10^{-\mathrm{pOH}} \\
\mathrm{pOH}=14-10.00=4.00 \\
\mathrm{pOH}=10^{-4.00}=1.0 \times 10^{-4} \mathrm{M} \\
\chi-1 \times 10^{-4} \mathrm{M} \\
\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \quad+\mathrm{H}_{2} \mathrm{O}(\ell)^{4} \mathrm{l} \\
\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\begin{array}{l}
1 \times 10^{-4} \mathrm{M} \\
\mathrm{OH}^{-}(\mathrm{aq})
\end{array}
\end{gathered}
$$

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]}{\left[\mathrm{HCO}_{3}^{-}(\mathrm{aq})\right]}=2.33 \times 10^{-8}
$$

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left(1.0 \times 10^{-4} \mathrm{M}\right)\left(1.0 \times 10^{-4} \mathrm{M}\right)}{\left(\chi-1.0 \times 10^{-4} \mathrm{M}\right)}=2.33 \times 10^{-8}
$$

$$
1.0 \times 10^{-8}=2.33 \times 10^{-8} \times-2.33 \times 10^{-12}
$$

$$
\chi=\frac{1.0 \times 10^{-8}}{2.33 \times 10^{-8}}=0.43 \mathrm{M} \mathrm{NaHCO}_{3}
$$

What is the pH and tartrate ion concentration in a 0.20 M solution of tartaric acid, $\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}(\mathrm{aq})$, or H_{2} Tart.
$\mathrm{K}_{\mathrm{a} 1}=9.6 \times 10^{-4} \quad \mathrm{~K}_{\mathrm{a} 2}=2.9 \times 10^{-5}$
Tartaric acid, a diprotic acid (two ionizable hydrogen), ionizes in two steps:

Step \#1:

$$
\begin{gathered}
\mathrm{H}_{2} \operatorname{Tart}(\mathrm{aq}) \mathbf{M}_{\mathrm{H}^{+}(\mathrm{aq})+\mathrm{Htart}(\mathrm{aq})} \\
\mathrm{K}_{\mathrm{a} 1}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{HTart} \operatorname{Tart}^{-}(\mathrm{aq})\right]}{\left[\mathrm{H}_{2} \operatorname{Tart}(\mathrm{aq})\right]}=9.6 \times 10^{-4}
\end{gathered}
$$

Step \#2:

$$
\operatorname{Htart}^{-}(\mathrm{aq}) \mathbf{M} \mathrm{H}^{+}(\mathrm{aq})+\operatorname{Tart}^{2-(\mathrm{aq})}
$$

$$
\mathrm{K}_{\mathrm{a} 2}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\operatorname{Tart}^{2-}(\mathrm{aq})\right]}{\left[\mathrm{HTart}^{-}(\mathrm{aq})\right]}=2.9 \times 10^{-5}
$$

$$
\begin{aligned}
& 0.2 \mathrm{M}-\chi \quad \chi \mathrm{M} \quad \chi \mathrm{M} \\
& \mathrm{H}_{2} \operatorname{Tart}(\mathrm{aq}) \downarrow \quad \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HTart}^{-}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{HTart}^{-}(\mathrm{aq})\right]}{\left[\mathrm{H}_{2} \operatorname{Tart}(\mathrm{aq})\right]}=9.6 \times 10^{-4} \\
& K_{a}=\frac{(\chi)(\chi)}{(0.2-\chi)}=9.6 \times 10^{-4} \\
& \mathrm{x}^{2}=9.6 \times 10^{-4}(0.2)-9.6 \times 10^{-4} \mathrm{x} \\
& \text { since } \mathrm{x} \ll 0.2 \mathrm{M} \text {, then } 9.6 \mathrm{x} 10^{-4} \mathrm{x} .0 \\
& \mathrm{x}^{2}=1.92 \times 10^{-4} \\
& \mathrm{x}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]=0.014 \mathrm{M}
\end{aligned}
$$

$0.014 \mathrm{M}-\chi \quad 0.014 \mathrm{M}+\chi \quad \chi \mathrm{M}$ $\mathrm{HTart}^{-}(\mathrm{aq}) \mathbb{\Downarrow} \quad \mathrm{H}^{+}(\mathrm{aq}) \quad+\operatorname{Tart}^{2-}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\operatorname{Tart}^{2-}(\mathrm{aq})\right]}{\left[\mathrm{HTart}^{-}(\mathrm{aq})\right]}=2.9 \times 10^{-5}
$$

$$
\mathrm{K}_{\mathrm{a}}=\frac{(0.014+\chi)(\chi)}{(0.014-\chi)}=2.9 \times 10^{-5}
$$

$$
\text { since } \mathrm{x} \ll 0.014 \text {, then } 0.014+\mathrm{x}-0.014-\mathrm{x}
$$

$$
\text { therefore, } \mathrm{x}=2.9 \times 10^{-5} \mathrm{M}
$$

$$
\begin{gathered}
{\left[\mathrm{H}^{+}(\mathrm{aq})\right]=0.014 \mathrm{M}+2.9 \times 10^{-5} \mathrm{M}} \\
{\left[\mathrm{H}^{+}(\mathrm{aq})\right]-0.014 \mathrm{M}} \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.014)=1.86 \\
{\left[\mathrm{Tart}^{2}\right]=2.9 \times 10^{-5} \mathrm{M}}
\end{gathered}
$$

Calculate the ionization constant, K_{a}, for the reaction:

$\mathrm{H}_{2} \operatorname{Tart}(\mathrm{aq}) \mathbf{2} \mathrm{H}^{+}(\mathrm{aq})+\operatorname{Tart}^{2-}(\mathrm{aq})$

Tartaric acid ionizes in two steps:

$$
\begin{gathered}
\mathrm{H}_{2} \operatorname{Tart}(\mathrm{aq}) \bigvee \mathrm{H}^{+}(\mathrm{aq})+\operatorname{Htart}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{a} 1}=9.6 \times 10^{-4}
\end{gathered}
$$

$\operatorname{Htart}^{-}(\mathrm{aq}) \mathbf{\mathrm { H } ^ { + } (\mathrm { aq }) + \operatorname { T a r t } ^ { 2 - } (\mathrm { aq })}$

$$
\mathrm{K}_{\mathrm{a} 2}=2.9 \times 10^{-5}
$$

$+\quad \operatorname{Htart}(\mathrm{aq}) \mathbf{\mathrm { H } ^ { + } (\mathrm { aq }) + \operatorname { T a r t } ^ { 2 - } (\mathrm { aq })}$

$$
\begin{gathered}
\mathrm{H}_{2} \operatorname{Tart}(\mathrm{aq}) \bigvee \mathrm{WH}^{+}(\mathrm{aq})+\operatorname{Tart}^{2-}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{eq}}=\mathrm{K}_{\mathrm{a} 1} \times \mathrm{K}_{\mathrm{a} 2} \\
\mathrm{~K}_{\mathrm{eq}}=\left(9.6 \times 10^{-4}\right)\left(2.9 \times 10^{-5}\right)=2.73 \times 10^{-8}
\end{gathered}
$$

Henderson-Hasselbalch Equation

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { base }]}{[\text { acid }]}
$$

$\operatorname{acid}(\mathrm{aq}) \mathbf{M} \mathrm{H}^{+}(\mathrm{aq})+$ conjugate base(aq)

$$
\begin{gathered}
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right][\text {conjugate base }]}{[\text { acid }]} \\
\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right] \times \frac{\text { [conjugate base] }}{\text { [acid] }} \\
-\log \left(\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right] \times \frac{\text { [conjugate base] }}{\text { [acid] }}\right) \\
\mathrm{pK}_{\mathrm{a}}=\mathrm{pH}-\log \frac{\text { [conjugate base] }}{\text { [acid] }} \\
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { [conjugate base] }}{\text { [acid] }}
\end{gathered}
$$

Another form of the Henderson-Hasselbalch equation is:

$$
\begin{gathered}
\mathrm{B}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}\left(\mathrm{~B} \mathbf{\mathrm { HB } (\mathrm { aq }) + \mathrm { OH } ^ { - } (\mathrm { aq })}\right. \\
\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HB}(\mathrm{aq})]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]}{\left[\mathrm{B}^{-}(\mathrm{aq})\right]} \\
\mathrm{K}_{\mathrm{b}}=\left[\mathrm{OH}^{-}(\mathrm{aq})\right] \times \frac{[\mathrm{HB}(\mathrm{aq})]}{\left[\mathrm{B}^{-}(\mathrm{aq})\right]} \\
-\log \left(\mathrm{K}_{\mathrm{b}}=\left[\mathrm{OH}^{-}(\mathrm{aq})\right] \times \frac{[\mathrm{HB}(\mathrm{aq})]}{\left[\mathrm{B}^{-}(\mathrm{aq})\right]}\right) \\
\mathrm{pK} \\
\mathrm{~b}
\end{gathered}=\mathrm{pOH}-\log \frac{[\mathrm{acid}]}{[\text { base }]}
$$

What is the pH of a solution containing equal volumes of $0.20 \mathrm{M} \mathrm{HF}(\mathrm{aq})$ and 0.20 M $\mathrm{NaF}(\mathrm{aq}) ? \mathrm{~K}_{\mathrm{a}}=3.5 \times 10^{-4}$

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { base }]}{[\text { acid }]} \\
\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=-\log \left(3.5 \times 10^{-4}\right)=3.45 \\
\mathrm{pH}=3.45+\log \frac{0.20 \mathrm{M}}{0.20 \mathrm{M}} \\
\mathrm{pH}=3.45+\log 1=3.45+0=3.45
\end{gathered}
$$

What is the pH of a solution which is 0.10 M acetic acid and 0.10 M sodium acetate? $\mathrm{K}_{\mathrm{a}}=$ 1.8×10^{-5}

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { base }]}{[\text { acid }]} \\
\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=-\log \left(1.8 \times 10^{-5}\right)=4.74 \\
\mathrm{pH}=4.74+\log \frac{0.10 \mathrm{M}}{0.10 \mathrm{M}} \\
\mathrm{pH}=4.74+\log 1=4.74+0=4.74
\end{gathered}
$$

What is the pH of a solution which is 0.10 M acetic acid and 0.010 M sodium acetate? $\mathrm{K}_{\mathrm{a}}=$ 1.8×10^{-5}

$$
\begin{gathered}
\mathrm{pH}=4.74+\log \frac{0.010 \mathrm{M}}{0.10 \mathrm{M}} \\
\mathrm{pH}=4.74+\log 0.1=4.74-1=3.74
\end{gathered}
$$

What is the pH of a solution which is 0.010 M acetic acid and 0.10 M sodium acetate? $\mathrm{K}_{\mathrm{a}}=$ 1.8×10^{-5}

$$
\begin{gathered}
\mathrm{pH}=4.74+\log \frac{0.10 \mathrm{M}}{0.010 \mathrm{M}} \\
\mathrm{pH}=4.74+\log 10=4.74+1=5.74
\end{gathered}
$$

What is the pH of a solution containing 2.84 grams of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and 1.20 grams of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ in 100 ml of solution?

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \mathbf{\mathrm { H } ^ { + } (\mathrm { aq }) + \mathrm { HPO } _ { 4 } ^ { 2 - } (\mathrm { aq })} \\
\mathrm{K}_{\mathrm{a}}=6.3 \times 10^{-8}
\end{gathered}
$$

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { base }]}{[\text { acid }]}
$$

$$
\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=-\log \left(6.3 \times 10^{-8}\right)=7.20
$$

$\frac{2.84 \mathrm{~g} \cdot \mathrm{Na}_{2} \mathrm{HPO}_{4}}{142 \mathrm{~g} / \mathrm{mol}}=0.020 \mathrm{~mol}, \frac{0.020 \mathrm{~mol}}{0.10 \ell}=0.20 \mathrm{M}$
$\frac{1.20 \mathrm{~g} \cdot \mathrm{NaH}_{2} \mathrm{PO}_{4}}{120 \mathrm{~g} / \mathrm{mol}}=0.010 \mathrm{~mol}, \frac{0.010 \mathrm{~mol}}{0.10 \ell}=0.10 \mathrm{M}$

$$
\begin{gathered}
\mathrm{pH}=7.20+\log \frac{0.20 \mathrm{M}}{0.10 \mathrm{M}} \\
\mathrm{pH}=7.20+\log 2=7.20+0.30=7.50
\end{gathered}
$$

Calculate the pH of a mixture containing 40.0 ml of 0.20 M KOH and 60.0 ml of 0.15 M HBr .

$$
\mathrm{HBr}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \mathbf{\mathbf { M K B r } ^ { 2 } (\mathrm { aq }) + \mathrm { H } _ { 2 } \mathrm { O } (\mathbf { B })}
$$

$40.0 \mathrm{ml} \times 0.20 \mathrm{M}=8.0$ mmoles KOH (strong base) $60.0 \mathrm{ml} \times 0.15 \mathrm{M}=9.0$ mmoles HBr (strong acid)

	HBr	KOH	KBr	$\mathrm{H}_{2} \mathrm{O}$
Start	9.0 mmol	8.0 mmol	0 mmol	-
React	8.0 mmol	8.0 mmol	-	-
At equilibrium	1.0 mmol	0 mmol	8.0 mmol	8.0 mmol

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log (0.01 \mathrm{M})=2.00
\end{aligned}
$$

35.0 ml of 1.0 M KOH is mixed with 15.0 ml of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, What is the pH of the resulting solution?

$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \mathbf{\mathbf { K } _ { 2 } \mathrm { SO } _ { 4 } (\mathrm { aq }) + 2 \mathrm { H } _ { 2 } \mathrm { O } (\mathrm { B }}$| $35.0 \mathrm{ml} \times 1.0 \mathrm{M}=35 \mathrm{mmoles} \mathrm{KOH}($ strong base $)$ |
| :--- |
| $15.0 \mathrm{ml} \mathrm{x} 1.0 \mathrm{M}=15 \mathrm{mmoles} \mathrm{H}_{2} \mathrm{SO}_{4}$ (strong acid) |

	$\mathrm{H}_{2} \mathrm{SO}_{4}$	2 KOH	$\mathrm{K}_{2} \mathrm{SO}_{4}$	$\mathrm{H}_{2} \mathrm{O}$
Start	15 mmol	35 mmol	-	-
React	15 mmol	30 mmol	-	-
At Equilibrium	0 mmol	5 mmol	15 mmol	30 mmol

$$
\begin{gathered}
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}(\mathrm{aq})\right]=-\log (0.10 \mathrm{M})=1.00 \\
\mathrm{pH}=14-\mathrm{pOH}=14-1.00=13.00
\end{gathered}
$$

Calculate the pH of a mixture containing 150 ml of $0.40 \mathrm{M} \mathrm{HF}(\mathrm{aq})$ and 50.0 ml of $1.0 \mathrm{M} \mathrm{LiOH}(\mathrm{aq}) . \mathrm{K}_{\mathrm{a}}=3.5 \times 10^{-4}$

$$
\begin{gathered}
\mathrm{HF}(\mathrm{aq})+\mathrm{LiOH}(\mathrm{aq}) \mathrm{M}_{\mathrm{LiF}(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{~B} \\
150 . \mathrm{ml} \times 0.40 \mathrm{M}=60 \mathrm{mmoles} \mathrm{HF} \text { (weak acid) } \\
50.0 \mathrm{ml}^{\mathrm{m}} 1.0 \mathrm{M}=50 \text { mmoles LiOH (strong base) } \\
\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=-\log \left(3.5 \times 10^{-4}\right)=3.46
\end{gathered}
$$

	HF	LiOH	LiF	$\mathrm{H}_{2} \mathrm{O}$
Start	60 mmol	50 mmol	0 mmol	0 mmol
React	50 mmol	50 mmol	-	-
At equilibrium	10 mmol	0 mmol	50 mmol	50 mmol

75.0 ml of $0.40 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$ is mixed with 40.0 ml of 0.50 M $\mathrm{HNO}_{3}(\mathrm{aq})$. Calculate the pH of the mixture. $\mathrm{K}_{\mathrm{a}}=5.6 \times 10^{-10}$

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \mathbf{M} \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~B}
$$

$75.0 \mathrm{ml} \times 0.40 \mathrm{M}=30.0 \mathrm{mmoles} \mathrm{NH}_{3}$ (weak base) $40.0 \mathrm{ml} \times 0.50 \mathrm{M}=20.0 \mathrm{mmoles} \mathrm{HNO}_{3}$ (strong acid) $\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=-\log \left(5.6 \times 10^{-10}\right)=9.25$

	NH_{3}	HNO_{3}	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	$\mathrm{H}_{2} \mathrm{O}$
Start	30 mmol	20 mmol	0 mmol	0 mmol
React	20 mmol	20 mmol	-	-
At equilibrium	10 mmol	0 mmol	20 mmol	20 mmol

75.0 ml of $0.40 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$ is mixed with 40.0 ml of 0.50 M $\mathrm{HNO}_{3}(\mathrm{aq})$. Calculate the pH of the mixture. $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \mathbf{\mathrm { NH } _ { 4 } \mathrm { NO } _ { 3 } (\mathrm { aq }) + \mathrm { H } _ { 2 } \mathrm { O } (\mathrm { B }}
$$

$75.0 \mathrm{ml} \times 0.40 \mathrm{M}=30.0 \mathrm{mmoles} \mathrm{NH}_{3}$ (weak base) $40.0 \mathrm{ml} \mathrm{x} 0.50 \mathrm{M}=20.0 \mathrm{mmoles} \mathrm{HNO}_{3}$ (strong acid) $\mathrm{pK}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}=-\log \left(1.8 \times 10^{-5}\right)=4.74$

	NH_{3}	HNO_{3}	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	$\mathrm{H}_{2} \mathrm{O}$
Start	30 mmol	20 mmol	0 mmol	0 mmol
React	20 mmol	20 mmol	-	-
At equilibrium	10 mmol	0 mmol	20 mmol	20 mmol

Buffers

Buffer solutions are solutions that resist a change in pH when hydronium ions or hydroxide ions are added. Buffers usually consist of a mixture of an acid and its conjugate base.

Some common buffer systems are:
Phthalic acid/hydrogen phthalate ion, $\mathrm{pK}_{\mathrm{a}}=2.89$
$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})_{2} / \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})(\mathrm{COONa})$
Acetic acid/acetate ion, $\quad \mathrm{pK}_{\mathrm{a}}=4.74$ $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COONa}$

Dihydrogen phosphate ion/ hydrogen phosphate ion, $\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}, \quad \mathrm{pK}=7.21$

Hydrogen phosphate ion/phosphate ion, $\mathrm{pK}_{\mathrm{a}}=12.44$

$\mathrm{Na}_{2} \mathrm{HPO}_{4} / \mathrm{Na}_{3} \mathrm{PO}_{4}$

