Formula	Electron dot symbol	Number of electron pairs around the central atom	Electron pair geometry	Molecular Structure	Shape of the molecule	Polar ity (Pola r or nonp olar)	Hybr idiza tion of centr al atom
Water H ₂ O	Н :О: Н	4	Tetrahedral	н О Н	bent or v-shaped	polar	
PF ₃							
XeF ₂							
XeF ₄							
ні							
PCl ₅							
SCl ₂							
CH ₂ Cl ₂							
Cl ₂ O							
NH ₃							
CCl ₄							
CS ₂							
COCl ₂							

THE SHAPES OF MOLECULES

The purpose of this experiment is to learn to predict the shapes of molecules by building a model of the molecule with a molecular modeling kit and applying the Valence Shell Electron Pair Repulsion Theory (VSEPRT):

Materials:

Model Kit

Procedure:

For each of the ten substances listed on the attached table, give the following information in the space provided.

- 1. The electron dot symbol for the molecule
- 2. The number of electron pairs of electrons around the central atom.
- 3. The electron pair geometry; only three of the five possibilities will be selected in this experiment; linear, trigonal planar, and tetrahedral.
- 4. Build a model of the substance with your model kit and draw its molecular structure.
- 5. Observe your model. Give the shape of the molecule from the arrangement of its atoms. The possibilities are linear, bent or v-shaped, tetrahedral, trigonal planar, and trigonal pyramidal. Note: It may be helpful to remove any sticks representing non-bonded electron pairs.
- 6. Observe the arrangement of the atoms. Are they arranged in a symmetrical or asymmetrical manner? That is, does one region on the outside of the molecule have a cluster of more electronegative element(s) and another region have less electronegative element(s)? If is does, then it is a polar molecule. If the areas are symmetrical, then the molecule is nonpolar.

Questions:

- Q1. Do any of the molecules studied have polar covalent bonds but are nonpolar molecules because of their symmetry? Explain!
- Q2. According to your models, what is the bond angle for each of the following bonds? Cl-P-Cl, Br-Be-Br,, and S-C-S
- Q3. Which one substance of the ten materials studied, has chemical bonds with the greatest degree of ionic character? Explain your choice.

Hybdridization	# of σ Bonds	# of Non- Bonding Pairs	Molecular Shape		Bond Angles	Example	
sp	2	0	••	Linear	180°		
sp ²	3	0		Trigonal planar	120°		
sp ²	2	1	× 	Angular	<120°		
sp ³	4	0		Tetrahedral	109.5°		
sp ³	3	1	~ <u>~</u>	Trigonal pyramidal	<109.5°		
sp ³	2	2		Angular	<109.5°		
sp ³ d	5	0	\rightarrow	Trigonal bipyramidal	120°, 90°		
sp ³ d	4	1		Sawhorse (irregular tetrahedron)	<120°, <90°		
sp ³ d	3	2		T-shaped	<90°		
sp ³ d	2	3	:	Linear	180°		
sp ³ d ²	6	0	\mathbf{X}	Octahedron	90°		
sp ³ d ²	5	1		Square pyramidal	<90°		
sp ³ d ²	4	2		Square planar	90 °		

Molecular Structure